七年级下学期数学教案

| 新华

推文网小编精心整理七年级下学期数学教案,希望这份七年级下学期数学教案优秀3篇能够帮助大家,给予大家在写作上的思路。更多七年级下学期数学教案资料,在搜索框搜索

七年级下学期数学教案精选篇1

一、知识导航

1、主要概念:变量是 ;自变量是 ;因变量是 。

2、变量之间关系的三种表示方法: 。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航

1、有关概念应用

例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?

① 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;

②正方形边长是3,若边长增加x,则面积增加为y.

2、利用表格寻找变化规律

例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:

施肥量

(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量

(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75

上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?

变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:

时间/秒 0 1 2 3 4 5 6 7 8 9 10

速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

①上表反映了哪两个变量之间的关系?哪个是因变量?

②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?

③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加?

④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?

3、用关系式表示两变量的关系

例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。

变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: 

4、用图像表示两变量的关系

例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:

(1)5月6日新增确诊病例人数为 人;

(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人;

(3)从图上可看出,5月上半月新增确诊病例总体呈 趋势.

例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).

A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了

B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了

C.从家出发,一直散步(没有停留),然后回家了

D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地.

三、一试身手

1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是(  )

2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)

之间的关系如图所示.

请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是______,

从点燃到燃尽所用的时间分别是_______;

(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?

3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(  )

A.8.6分钟 B.9分钟

C.12分钟 D.16分钟

4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示.

回答问题:(1)机动车行驶几小时后加油?

(2)中途中加油_________L;

(3)已知加油站距目的地还有 ,车速为 ,

若要达到目的地,油箱中的油是否够用?并说明原因.

5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.

所挂质量

0 1 2 3 4 5

弹簧长度

18 20 22 24 26 28

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当所挂物体重量为 时,弹簧多长?不挂重物时呢?

(3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗?

6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:

(1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式;

(2)小明从批发市场共购进多少千克西瓜?

(3)小明这次卖瓜赚子多少钱?

7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?

(2)通话多少分钟内,所支付的电话费不变?

(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元?

8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:

(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?

(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?

(3)按此规律,持续干旱多少天时,水库将干涸?

9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元.

(1)写出 、 与x之间的关系式;

(2)一个月内通话多少分钟,两种移动通讯费用相同?

(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?

七年级下学期数学教案精选篇2

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

七年级下学期数学教案精选篇3

【学习目标】

1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.

2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.

【学习重点】

利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.

【学习难点】

两个负数大小的比较.

行为提示:创景设疑,帮助学生知道本节课学什么.

行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.

教会学生落实重点.

情景导入 生成问题

旧知回顾:

1.什么是绝对值?

答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.

2.正数、负数、0的绝对值分别是什么?

答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

自学互研 生成能力

知识模块一 用数轴比较有理数的大小

阅读教材P14~P15的内容,回答下列问题:

问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?

答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.

方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.

学习笔记:

行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.  

典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是( A )

A.a>b>c      B.a>c>b

C.b>c>a D.c>b>a

仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( C )

A.-aC.a<-1<-a D.a<-a<-1

仿例2:把下列各数在数轴上表示出来,并用“<”连接各数.

-1.5,-0.5,-3.5,-5.

解:将这些数在数轴上表示出来,如图:

从数轴上可看出:-5<-3.5<-1.5<-0.5.

知识模块二 用法则比较有理数的大小

阅读教材P15的内容,回答下列问题:

问题:两个负数怎样比较大小?

答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.

典例:比较大小:

(1)-2.1<1;      (2)-3.2>-4.3;

(3)-12<13; (4)-14<0.

仿例1:比较-12、-13、14的大小结果正确的是( A )

A.-12<-13<14         B.-12<14<-13

C.14<-13<-12 D.-13<-12<14

仿例2:比较下列各对数的大小:

(1)-(-3)与|-2|;

解:∵-(-3)=3,|-2|=2,

∴-(-3)>|-2|;     (2)-(-6)与|-6|.

解:∵-(-6)=6,|-6|=6,

∴-(-6)=|-6|.

变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.

交流展示 生成新知

1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.

2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.

知识模块一 用数轴比较有理数的大小

知识模块二 用法则比较有理数的大小

检测反馈 达成目标

【当堂检测】见所赠光盘和学生用书

【课后检测】见学生用书

课后反思 查漏补缺

1.收获:________________________________________________________________________

2.困惑:________________________________________________________________________

    相关文章

    284822