北师大版六年级数学上册教案

| 金红

推文网小编精心整理北师大版六年级数学上册教案,希望这份北师大版六年级数学上册教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多北师大版六年级数学上册教案资料,在搜索框搜索

北师大版六年级数学上册教案【篇1】

教学目标:

1、在拼搭和观察立体图形的实践活动中,培养学生的观察操做和空间想像能力。

2、在拼搭立体图形的实践活动中,体验并初步学会用上、下、左、右、前、后等词描述正方体的相对位置。

3、通过实践活动,发展与同伴合作的意识,获得积极的数学学习情感体验。

教学重点:

在拼搭立体图形的实践活动中,体验并初步学会用上、下、左、右、前、后等词描述正方体的相对位置。

教学难点:

在拼搭和观察立体图形的实践活动中,培养学生的观察、操作和空间想象能力。

教学用具:

小正方体、小黑板、电脑课件。

教学过程:

一、情境导入

同学们,你们喜欢做游戏吗?今天笑笑和淘气就进行了一个游戏,非常有趣,你们想看吗?

二、探索新知

(一)操作活动一——根据指令搭立体图形。

1、教师通过课件演示“淘气”和“笑笑”搭立体图形的游戏过程。

师:同学们刚才都认真观察了淘气和笑笑的搭图形游戏,谁发现了这个游戏的方法。

师:谁想为这个游戏提出游戏的规则和要求。

2、师生游戏。教师发出指令,学生尝试搭立体图形,进一步体验游戏的方法。

(1)请横着摆两个正方体。

(2)在左边的正方体的上面放一个小正方体。

(3)再在左边的正方体的前面放一个小正方体。

3、学生同桌间游戏。

师:下面我们来做同桌两人的游戏好吗?请一个学生先发出指令,另一个学生搭立体图形,然后互换。

4、学生交流。教师在巡视中发现学生的典型操作活动进行交流。

师:大家刚才都做了搭一搭的游戏,你觉得游戏有趣吗?

你喜欢做这个游戏吗?把你自己的想法在小组里互相说一说。

(二)操作活动二——提问、判断并搭出立体图形。

1、师生活动师范。

(1)师:下面我们继续玩搭一搭的游戏,这回老师想先和一位小朋友玩,谁愿意做老师的小伙伴。

(2)师:你先搭一个自己喜欢的立体图形,让全班同学都看一看老师先站到旁边去,记得可别让我看见哟。

(3)师:你们都看到他搭的立体图形了吗?现在由老师向他提几个问题,我根据提出的.问题要搭出一个和他一模一样的立体图形,你们相信吗?

(4)师:刚才大家看到了老师和这位同学的游戏谁能说说游戏的方法。

2、学生同桌间开展游戏。要求学生用尽可能少的提问来搭出正确的立体图形。

三、拓展应用。

师:下面请同学们4人小组合作,由学习组长安排好各人的分工,一起做这个游戏,注意在小组中尽可能多的想出别的不同方法做游戏,要求要通过尽可能少的提问,搭出正确的立体图形。

四、全课总结。

北师大版六年级数学上册教案【篇2】

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学过程:

一、复习。

1、口答。

4 5 8

2、求出下面各圆的周长。

C=d c=2r

3.142 23.144

=6.28(厘米) =83.14

=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=d C=2r

(3)根据上两个公式,你能知道

直径=周长圆周率 半径=周长(圆周率2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77m 求:d=?

解:设直径是x米。

3.773.14 3.14x=3.77

1.2(米) x=3.773.14

x1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c(2) 求:r=?

解:设半径为x米。

3.142x=1.2 1.223.14

6.28x=1.2 = 0.191

x=0.191 0.19(米)

x0.19

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

(1)3.148

(2)3.1482

(3) 3.1482+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的'周长是多少?20__.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20__.14=125.6(厘米)

45分钟走了多少厘米? 125.6 =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

四、 作业。

P65-66 第3、6、7、9题

教学追记:

圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

北师大版六年级数学上册教案【篇3】

教学目标

(一)知识教学点

1、理解圆柱体体积公式的推导过程,掌握计算公式。

2、会运用公式计算圆柱的体积。

(二)能力训练点

1、能运用圆柱体的体积公式解决一些实际问题。

2、通过圆柱体体积公式的推导,培养学生的分析推理能力。

(三)德育渗透点

通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

教学重点

圆柱体体积的计算。

教学难点

理解圆柱体体积公式的推导过程。

教具学具准备

1、推导圆柱体体积的圆柱体教具一套,学生学具每人一套。

2、投影片、电脑软件。

教学步骤

一、铺垫孕伏

1、提问:

(1)什么叫体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2、导入:

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的'体积)

二、探究新知

1、教学圆柱体的体积公式

(1)教师演示:

同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。

(2)学生操作(教师要注意巡视指导)

(3)启发学生观察、思考、讨论:

①圆柱体切开后可以拼成一个什么形体?(近似的长方体)

②通过刚才的实验你发现了什么?(教师要注意启发、引导)

a、拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

b、拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

c、近似长方体的高就是圆柱的高,没有变化。

(4)教师演示,学生观察。

同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)

①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)

(5)启发学生说出通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形体越近似于长方体。

②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)

(6)启发学生思考回答:

为什么要把圆柱体拼成近似的长方体?你从中发现了什么?

①圆柱体与近似的长方体,形状不同,体积相同。

②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。

(7)推导圆柱的体积公式:

①学生分组讨论:圆柱体的体积怎样计算?

②学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底↓面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积↓),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)

③用字母表示圆柱的体积公式。(板书:v=sh)

④启发学生回答:求圆柱的体积必须具备哪两个条件?

(8)反馈练习:

口答,只列式不计算:

①底面积是10,高是2,体积是()

②底面积是3,高是4,体积是()

2、教学例4、

(1)出示例4、

(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)

(3)订正。(如发现有50×2、1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)

(4)反馈练习:完成第9页练一练第1题。

一名学生在小黑板上做,其余学生在练习本上做,然后订正。

3、启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)

(1)已知圆柱的底面半径和高,求体积。

(2)已知圆柱的底面直径和高,求体积。

(3)已知圆柱的底面周长和高,求体积。

反馈练习:完成第9页练一练第2题,学生口述解题思路,不计算。

4、教学例5

(1)出示例5。

(2)引导学生分析题意:

①这道题已知什么?求什么?

②要求水桶的容积,应先求什么?再求什么?

(3)求水桶的底面积:(学生在练习本上解答,然后订正)

板书:(1)水桶的底面积:

(4)求水桶的容积:(让学生填在书上的空白处,然后订正)

板书:(2)水桶的容积:

3、14×25

=7850(立方厘米)

≈7、9(立方分米)

答:这个水桶的容积大约是7、9立方分米。

三、巩固发展

1、完成练一练第3题。

投影出示题目内容,学生独立完成。

2、完成练一练第4题。

学生独立解答,集体订正,并说解题思路。

3、一个圆柱形水池,半径是10米,深1、5米。这个水池占地面积是多少?水池的容积是多少立方米?

学生独立解答,然后订正。

四、全课总结

通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)

五、布置作业:练一练第5—6题。

北师大版六年级数学上册教案【篇4】

教学内容:

课本第5758页扇形统计图。

教学目标:

1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

3、提高学生的实际应用能力。

教学重点:

认识扇形统计图,了解扇形统计图的特点与作用。

教学难点:

学生的实际应用能力的提高。

教具准备:

课件

教学过程:

一、复习旧知,引入新知

1、电脑课件呈现下表

种 类 摄入量/克 占总摄入量的百分比

油脂类 50

奶类和豆类 450

鱼、禽、肉、蛋等类 600

蔬菜和水果类 900

谷类 1800

2、电脑课件呈现统计图(或以学生的作品亦可)。

3、引入新知。

二、探索交流,获取新知

1、什么样的统计图是扇形统计图呢?

2、了解扇形统计图特点

3、即时练习。

完成课后的说一说。

(1)学生观察课文中的扇形统计图,读一凑统计图中的'各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比

汇报计算结果,订正

学生发言、交流

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息

根据教师引导说出发现

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法

进行计算,订正

三、小结本课学习内容

谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?

提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?

揭题,板书课题:扇形统计图。

出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)

四、巩固升华

完成课后试一试。

1、比较各项活动时间,说一说有什么不同。提出数学问题

2、总时间是多少?各项活动时间可以怎么计算?

3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

五、全课小结:

你今天有什么收获?还有什么不懂的地方?

板书设计:

扇形统计图

能清楚地反映整体与部分的关系。

北师大版六年级数学上册教案【篇5】

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:

使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

教学难点:

理解比的意义,掌握比与比值的区别。

教学过程:

一、情境导入

1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

预设可能提出的问题:

(1)周长和面积

(2)长比宽多几米?

(3)宽比长短几米?

(4)长是宽的几倍?

(5)宽是长的几分之几?

师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。

二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

(2)交流小结:

板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

(二)、完

成试一试在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例

2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

1、想一想,我们怎样求两人的速度?

2、

2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的区别:

1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

我们把比的前项除以后项所得的商叫做比值。

2、说说这几个比值分别表示什么?

3、讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的'比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

2、完成“练一练”的1、2、3小题。

3、完成练习十三的第4题。

4、糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

    相关文章

    486235