人教版九年级数学上册教案

| 康华

在教学过程中,我将采用多种教学方法和资源,以满足不同学生的学习需求。以下是小编为大家收集的人教版九年级数学上册教案,欢迎阅读,希望大家能够喜欢。

人教版九年级数学上册教案

人教版九年级数学上册教案精选篇1

【教学内容分析】:本课选自我校生活数学校本教材“折扣”其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。

【学情分析】:a类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格, 100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。

b类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。

【教学目标】:

知识与能力:a组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。

b组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。

过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。

情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。

【教学重点】:计算折扣后的物品价格。

【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。

【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。

【教学准备】:课件

【教学过程】:

一、 复习导入

【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的。物品价格做铺垫。】

3折=0.3 5折=0.5 8折=0.8 6折=0.6

2.5折=0.25 3.8折=0.38 7.2折=0.72

ab组学生进行折扣与小数的转换。

二、 折扣的计算

【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。】

1、 计算折扣

棉鞋原价:650元,现4折出售,需要多少元钱?

1折扣换算为小数:4折 = 0.4

2列算式:650×0.4=260 (元)

2、 练一练:

《百科全书》原价150元,现7折出售,需要多少元钱?

老师引导学生做练习。

预设生成:学生列算式时 ,容易直接列成150×7=1050 (元)

解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。

3、 巩固练习:

登山鞋原价480元,现7.5折出售,需要多少元?

三:折扣的比较

【设计意图:通过观察比较,和提示性的提问,让学生自己发现折扣数和价格之间的关系,并总结出折扣数越小的,价格越低,越便宜。】

课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。

羽绒服原价500元

商场一: 商场二: 商场三:

8折 7折 9折

请学生说出列式并快速计算得数。

商场一: 500×0.8=400(元)

商场二: 500×0.7=350(元)

商场三: 500×0.9=450(元)

比较得出最便宜的商场,商场二。

1、折扣是整数的比较:

商场二打7折是最便宜的,哪个商场是最贵的呢?

商场三

那么商场三是打几折呢?

9折

比较一下折扣和最后的价格,你会发现什么呢?

结论:相同价格的物品,折扣数越小,价格越低,越便宜。

总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)

预设生成:

a组:不能发现折扣与最终价格之间的关系。

b组:计算后,学生比较不出谁更便宜。

解决措施:

a组:进一步进行提示,把问题提的更具体。

b组:教师帮助学生将数字放在一起进行比较。

2、折扣是小数的比较:

【设计意图:两个比较接近的折扣的比较,同时包括小数的比较,运用之前找到的规律找出便宜的商品。】

出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。

书包原价100元

商场一: 商场二:

8折 8.8折

谈话:刚刚通过比较我们知道了在原价相同的情况下,折扣数越小,价格就越低,越便宜的这个规律,那么这次有没有同学能直接告诉老师哪个商场的书包更便宜些呢?

学生回答(a组的学生会很快理解并正确比较,b组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)

验证:

商场一: 100×0.8=80(元)

商场二: 100×0.88=88(元)

比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请a组学生进行总结)

预设生成:

a组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。

b组:不理解规律的内容。

解决措施:

a组:老师指出黑板上总结出的规律对学生进行提示。

b组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。

3、课堂练习:

【设计意图:在课件上进行选择商品,复习本课所涉及的各种不同的折扣的比较,而且渗透选择商品的多种渠道。】

(1)不用计算,说出每组商品中,谁的价格更便宜。

课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。

2保温杯原价120元,大润发6折,沃尔玛6.6折。

3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。

(2)游戏:模拟商店

【设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】

课件出示两个商场,同时出示原价相同的几种商品,但折扣不同,发给学生“任务单”,让学生实际来进行选择,选择后说一说选择谁的商品?是怎样选的?

四、 拓展延伸

出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。

五、课堂小结:

这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。

板书设计:

一、 折扣的计算 二、折扣的比较

4折=0.4 500×0.8=400(元)

650×0.4=260 (元) 500×0.7=350(元)

500×0.9=4500(元)

相同价格的物品,折扣数小的,价格就低。

家庭指引:

a组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。

b组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。

人教版九年级数学上册教案精选篇2

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:三角形内切圆的概念及内心的性质。因为它是三角形的重要概念之一。

难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好。

2、教学建议

本节内容需要一个课时。

(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学。

教学目标 :

1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

3、激发学生动手、动脑主动参与课堂教学活动。

教学重点:

三角形内切圆的作法和三角形的内心与性质。

教学难点 :

三角形内切圆的作法和三角形的内心与性质。

教学活动设计

(一)提出问题

1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?

2、分析、研究问题:

让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义。

3、解决问题:

例1 作圆,使它和已知三角形的各边都相切。

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法。

提出以下几个问题进行讨论:

①作圆的关键是什么?

②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

③这样的点I应在什么位置?

④圆心I确定后半径如何找。

A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成。

完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个。

(二)类比联想,学习新知识。

1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC;

(2)外心不一定在三角形的内部。

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

(3)内心在三角形内部。

3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形。

4、概念理解:

引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解。使学生弄清“内”与“外”、“接”与“切”的含义。“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”。

(三)应用与反思

例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心。

求∠BOC的度数

分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数。因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数。

解:(引导学生分析,写出解题过程)

例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

求证:DE=DB

分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法。

证明:连结BE.

E是△ABC的内心

又∵∠1=∠2

∠1=∠2

∴∠1+∠3=∠4+∠5

∴∠BED=∠EBD

∴DE=DB

练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内。

(四)小结

1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?

2.学生回答的基础上,归纳总结:

(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念。

(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径。

(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用。

(五)作业

教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题。

探究活动

问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.

(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);

(2)计算出的圆形纸片的半径(要求精确值).

提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合。则点O为所求圆的圆心,OE为半径。

(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

人教版九年级数学上册教案精选篇3

教学目标

(1)会用公式法解一元二次方程;

(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

(3)渗透化归思想,领悟配方法,感受数学的内在美。

教学重点

知识层面:公式的推导和用公式法解一元二次方程;

能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法。

教学难点:求根公式的推导。

总体设计思路:

以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维。

教学过程

(一)以旧引新,提出问题

解下列一元二次方程:(学生选两题做)

(1)_2+4_+2=0 ; (2)3_2-6_+1=0;

(3)4_2-16_+17=0 ; (4)3_2+4_+7=0.

然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

(1)3_2+4_+2=0; (2)3_2-2_+1=0;

(3)4_2-16_-3=0 ; (4)3_2+_+7=0.

思考:新的四题与原题的解题过程会发生什么变化?

设计意图: 1.复习巩固旧知识,为本节课的学习扫除障碍;

2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望。

3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

(二)分析问题,探究本质

由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根。

进而提出下面的问题:

既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系。

a_2+b_+c=0(a≠0) 注:根据学生学习程度的不同,可

a_2+b_=-c 以采用学生独立尝试配方, 合

_2+ _=- 作尝试配方或教师引导下进行

_2+ _+ =- + 配方等各种教学形式。

(_+ )2=

然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2 -4ac”的重要性。

当b2-4ac≥0时,

(_+ )2= 注:这样变形可以避免对a正、负的讨论,

_+ = 便于学生的理解。

_=- 即_=

_1= , _2=

当b2-4ac<0时,

方程无实数根。

设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维。

(三)得出结论,解决问题

由上面的探究过程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c确定。 当b2-4ac≥0时,

_=;

当b2-4ac<0时,方程无实数根。

这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美。

进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法。

设计意图: 理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

运用公式法解一元二次方程。(前两道教师示范,后两道学生练习)

(1)2_2-_-1=0; (2)4_2-3_+2=0 ;

(3)_2+15_=-3_; (4)_2- _+ =0.

注:( 教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

用公式法解一元二次方程:(比一比,看谁做得又快又对)

(1)_2+_-6=0; (2)_2- _- =0;

(3)3_2-6_-2=0;(4)4_2-6_=0;

设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

(四)拓展运用,升华提高

[想一想]

清清和楚楚刚学了用公式法解一元二次方程,看到一个关于_ 的一元二次方程_2+(2m-1)_+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,

而楚楚反驳说:“不一定,根的情况跟m的值有关”。那你们认为呢?并说明理由。

设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高。比较配方法在不同题型中的用法,

避免以后出现运算错误。

归纳小结, 结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程。

(五) 布置作业

一必做题

二选做题:P46第12题。

设计意图:结合学生的实际情况,可以分层布置。 适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

人教版九年级数学上册教案精选篇4

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想。培养学生发现问题解决问题,及逻辑思维的能力。

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学。逐步建立数学的观念,培养学生独立地获取知识的能力。

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ =(m2-1)2+4(2m2+2)

=m4-2m2+1+8m2+8

=m4+6m2+9

=(m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点。(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高。②学会合作,消除个人中心。③发现自我,提高参与度。④弘扬个体的主体性,形成健康,丰富的个性。

数:点在曲线上,点的坐标满足曲线的方程。反之,曲线方程的每一个实数解对应的点都在曲线上。抛物线与x轴的交点,既在抛物线上,又在x轴上。所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式。设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的解。代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题。根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根。∴y =ax2+bx+c

y =0

有两个不等的实数解

∴抛物线与x轴交于两个不同的点。

形:顶点在x轴上方,且开口向下。或者顶点在x轴下方,且开口向上。

设计意图:渗透解析几何的基本思想

使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性。掌握数形结合,分类讨论的思想方法。逐步学会数学的思维。

转化成代数语言为:

小结:第一种方法,根据解析几何的基本思想。将求曲线的交点问题,转化成求方程组的解的问题。

第二种方法,借助于图象思考问题,比较直观。发现规律后,再用数学的符号语言将其形式化。这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法。

思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系。

设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程。使主体积极地参与到学习中去。以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念。

⑵m取什么实数时,两交点间距离最短?是多少?

解:设二次函数与x轴的两交点为(x1,0),(x2,0)

解法㈠ 由⑴可知m为任何实数时, 都有△>0

解①

∴ x1+x2=m2-1

x1·x2=-2(m2+1)

∴│x2-x1│=

=

=

=

=m2+3

∴当m =0时,两交点最小距离为3

这里两交点间距离是m的函数

设计意图:培养学生的问题意识。在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法。培养学生独立地获取数学知识的能力。渗透函数思想

问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明。

设x1、x2 为ax2+bx+c =0的两根

可以推出:

还可以理解为顶点到x轴距离最短。

设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构。

小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法。

解法㈡:用十字相乘法或求根公式法求根。

思考:一元二次方程与二次函数的关系。

思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

练习:

观察函数 的图象,回答:

(1)y>0时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y<0时,x的取值范围如何?

小结:数与形是数学中相互依赖的两个方面。图形比较直观,可以启发思路;而数学的严格证明也是必不可少的。直观性和形式化是数学的两重性。

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把。

(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8) (元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价 元时利润最大,最大利润为 元

=

=

=

∴ 当 时, 有最大值

(4)设降价 元时利润最大,利润为 元

(其中 )。

化简,得 。

∴ 当 时, 有最大值。

∴ 。

数学教案-二次函数y=ax2+bx+c 的图象

人教版九年级数学上册教案精选篇5

1、知识与技能

(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;

2、过程与方法

通过猜想、探讨构建一元二次方程模型。

3、情感、态度与价值观

(1)通过自主、探究性学习,使学生养成良好的思维习惯;

(2)通过对方程解的合理性解释,培养学习实事求是的作风。

二、教学重点难点

1、重点

找出问题中的数量关系;

2、难点

找等量关系并列出相应方程。

三、教材分析

本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型。

四、教学过程与互动设计

(一)温故知新

1、请同学们回忆并回答解一元一次方程应用题的一般步骤:

第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;

第二步:找出能够表示应用题全部含义的相等关系;

第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;

第四步:解这个方程,求出未知数的值;

第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称。)

2、解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样。

我们先来解一些具体的题目,然后总结一些规律或应注意事项。

(二)创设情景,导入新课

1、一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。

若梯子的顶端下滑1米,那么

(1)猜一猜,底端也将滑动

1米吗?

(2)列出底端滑动距离所满足的方程。

【答案】①底端将滑动1米多

②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际。

2、【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

(1)学生讨论:怎样计算月利润增长百分率?

【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润

例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率。

分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍。

解:设平均降价百分率为x,根据题意,得

56(1-x)2=31.5

解这个方程,得

x 1 = 1.75,x2=0.25

因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25%

答每次降价百分率为25%。

【跟踪练习】

某药品经两次降价,零售价降为原来的一半。已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%)。

【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性。

(三)应用迁移,巩固提高

1、某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )

(

a)200(1+a%)2=148 (b)200(1-a%)2=148

(c)200(1-2a%)=148 (d)200(1-a2%)=148

2、为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?

(四)达标测试

1、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()

a、100(1+x)2=800 b、100+100×2x=800 c、100+100×3x=800 d、100[1+(1+x)+(1+x)2]=800

2、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程。

,一元二次方程的解法

3、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?

4、某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)

5、某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数

五、课堂小结

    相关文章

    684398