高中数学说课稿精选
在教学工作者实际的教学活动中,通常会被要求编写说课稿,借助说课稿我们可以快速提升自己的教学能力。那么高中数学说课稿怎么写呢?下面是小编给大家整理的高中数学说课稿,希望大家喜欢!
高中数学说课稿篇1
一、教材内容分析
1、本节课内容在整个教材中的地位和作用。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
2、教学目标定位。
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
3、教学重点、难点确定。
本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
二、教法学法分析
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。
三、教学过程分析
1、创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20__年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。
2、探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。
3、启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0,c="">0或a__2+b__+c<0,a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程a__2+b__+c=0的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。
4、训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5、延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。
四、课堂意外预案
新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案"。
1、学生在做课本练习1(__+2)(__-3)>0时,可能会问到转化为不等式组{或{求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。
2、根据以往的经验,在解(__-1)(__+2)>1一类的不等式的时候,由于受方程(__+1)(__+2)=0可转化为__-1=0或__+2=0求解的影响,有可能会出现将不等式转化为不等式组{来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。
高中数学说课稿篇2
一、教材分析
1、教材的地位与作用。
本节内容是在学生学习了“事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。”用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。
在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下面学习求比较复杂的情况的概率打下基础。
2、重点与难点。
重点:对概率意义的理解,通过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。
难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。
二、目的分析
知识与技能:掌握用频率预测概率和用列举法求概率方法。
过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。
情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。
三、教法、学法分析
引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现“教”为“学”服务这一宗旨。
四、教学过程分析
1、引导学生探究
精心设计问题一,学生通过对问题一的探究,一方面复习前面学过的“确定事件和不确定事件”的知识,为学好本节内容理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。
2、归纳概括
学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。
引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题能力,又让学生明确用列举法求概率这一简便快捷方法的合理性。
3、举例应用
⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。
⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。
4、深化发展
⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。
⑵让学生设计活动内容,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新能力。
高中数学说课稿篇3
一、教材分析:
"数列"是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。
就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。
二、教学目标:
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。
1、知识目标:
(1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。
(2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。
2、能力目标:
培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。
3、情感目标:
通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。
三、重点、难点:
1、教学重点
理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。
2、教学难点
根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。
四、教法学法
本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。
现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。
"授人以鱼,不如授人以渔",平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。
为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教学手段与现代教学手段相结合,将引例、例题、练习等实物投影。
五、教学过程
1、创设情景,激发兴趣,引入新课
(1)电脑动画演示:国际象棋棋盘格子中放有麦粒的示意图,从而得到一组数:1,2,22,23……263
叙述故事:给你一张报纸,你可以用它登上月球,你相信吗?只要不断地将报纸对折42次以后,报纸的厚度就可以达到月球和地球的距离。
设计意图:以实例引入概念,再配以电脑动画,叙述小故事,增强了感性认识,调动学生学习新知识的积极性。
(2)投影演示,再观察以下几列数:
①某班学生的学号:1,2,3,4……,50
②从1984年到20__年,中国体育健儿参加奥运会每届所得的金牌数:
15,5,16,16,28,32
③某次活动,在1km长的路段,从起点开始,每隔10m放置一个垃圾筒,由近及远各筒与起点的距离排成一列数:0.10.20.30,……1000
④放射性物质衰变,设原质量为1,则各年的剩留量依次为:1,0.84,0.842,0.843,……
2、归纳抽象,形成概念
(1)学生尝试叙述数列的定义:启发学生观察上述几组数据后,进行归纳总结定义:按一定次序排成的一列数,叫数列,便于培养学生的抽象概括能力。
举例1:1,3,5,7与7,5,3,1 这两个数列有何区别?
举例2:-1,1,-1,1,……是不是一个数列?
设计意图:使学生注意把数列中的数和集合中的元素区分开来:
①数列中的数是有顺序的,而集合中的元素是无序的。
②数列中的数可以重复出现,而集中的元素不能重复出现。
进一步加深学生对数列定义的理解。
(2)数列的项及项的表示方法: an
(3)数列的表示方法:可写成:a1,a2,a3,……,an……
或简记为:{an},注意an与{an}的区别
上述(2)(3)采用指导阅读法(书P106页第7节~第8节第一句话),对an与{an}的区别进行集体讨论归纳。
3、通项公式的探索
(1)观察归纳定义
由学生观察引例中数列的项与它在数列中的位置(即项的序号)间的关系:
实物投影:
序号 1 2 3 …… 64
↓ ↓ ↓ ↓
项 1= 21-1 2=22-1 22 = 23-1 …… 263
从而可看出项与项的序号之间可用一个公式:an =2n-1表示,该公式叫数列的通项公式,然后归纳抽象出数列的通项公式的定义(略)。
(2)用函数观点看待数列:这是一个难点,讲解必须清楚、透彻。数列可看作是以自然数集或它的有限子集为定义域的函数,当自变量由小到大依次取值时对应的一列函数值(这是数列的本质),其图象是一群孤立的点,画图(棋盘麦粒这个数列)
设计意图:加深对函数概念的理解。
(3)数列的分类,并口答引例及数列①②③④分别归于哪类数列。
4、讲解例题
设计例题:①根据通项公式写出前几项并会判断某个数是否为该数列中的项;②根据数列的前几项写出一个通项公式。
例1,根据下列数列{an}的通项公式,写出它的前5项
(1) an= n/(n+1) (2)an=(-1)n · n
设计意图:使学生正确掌握通项与序号的关系。
变式训练:问 2589/2590是否为数列(1)中的项
设计意图:使学生明确方程思想是解决数列问题的重要方法。
例2,写出下列数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,3,5,7
(2)2, -2,2 ,-2
(3)1 ,11 ,111 ,
设计意图:引导学生进行解题后反思,对完善学生的认知结构是十分必要。写通项公式时,就是要去发现an与n的关系,对各项进行多角度、多层次观察,找出这些项与相应的项数(即序号)之间的对应关系。(注:遇到分数,可分别观察分子组的数列特征与分母组成的数列特征;若为正负相间的项,则可用-1的奇次幂或偶次幂进行符号交换,有时也可根据相邻的项,适当调整有关的表达式。)
5、练习巩固
投影演示:
(1)写出数列1,-1,1,-1,……的一个通项公式
(2)是否所有数列都有通项公式?
上述(1)的设计意图:an=(-1)n+1也可写成 (分段函数的形式)(当n为奇数时,n为偶数时),说明根据数列的前几项写出的通项公式可能不唯一。(2):引例②就没有通项公式。通过这些练习,使学生能及时消化,及时巩固所学内容。
6、归纳小结
由学生试着总结本节课所学内容,老师适当补充,可以训练学生的收敛思维,有助于完善学生的思维结构。
(1) 数列及有关概念。
(2) 根据数列的通项公式求任意一项,并能判断某数是否为该数列中的项。
(3) 根据数列的前几项写出数列的一个通项公式。
(4) 数列与函数的关系
7、课后作业:
(1)课本P110/习题3.1/1(3)(4)(5);2、书P108/4(1)(3)(4)
(2)复习看书P106-107
六、评价与分析
本节课,教师可通过创设情景,适时引导的方式来激发学生积极思考的欲望,有时直接讲解,有时组织掌握学生集体讨论、探索发现,课堂上除反复强调注意点外,还应通过课堂练习和课后作业来强化它们。
通过本节课的学习,学生不仅掌握了数列及有关概念,而且可体会到数学概念形成过程中蕴含的基本数学思想:"函数思想、数形结合思想、特殊化思想",使之获得内心感受,提高了基本技能和解决问题的能力,也可以逐渐学会辩证地看待问题。
高中数学说课稿篇4
一、教材分析:
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与能力:
(1)了解柱体、锥体、台体的表面积.
(2)能用公式求柱体、锥体、台体的表面积。
(3)培养学生空间想象能力和思维能力
过程与方法:
让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。
情感、态度与价值观:
通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。
3.重点,难点以及确定依据:
本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
教学重点:柱,锥,台的表面积公式的推导
教学难点:柱,锥,台展开图与空间几何体的转化
二、教法分析
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的'潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三.学情分析
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
四、教学过程分析
(1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性
(2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。
(3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。
(4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(5)例题及练习,见学案。
(6)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
(7)小结。让学生总结本节课的收获。老师适时总结归纳。
高中数学说课稿篇5
各位老师:
今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。
2、教学的重点和难点
重点:条件语句的表示方法、结构和用法;用条件语句表示算法。
难点:理解条件语句的表示方法、结构和用法。
二、教学目标分析
1、知识与技能目标:
⑴正确理解条件语句的概念,并掌握其结构。
⑵会应用条件语句编写程序。
2、过程与方法目标:
⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。
⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。
⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。
3、情感,态度和价值观目标
⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。
⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。
⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。
三、教学方法与手段分析
1、教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
2、教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1、创设情境(约4分钟)
首先,我要求学生们编写程序,输入一元二次方程
的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。
2、探究新知(约8分钟)
为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:
例1 编写一个程序,求实数__的绝对值。
整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究。
3、知识应用(约15分钟)
此环节有两个例题
例2 编写程序,写出输入两个数a和b,将较大的数打印出来
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出。
先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)
4、练习巩固(约4分钟)
课本第30页第3题
练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。
5、课堂小结(约5分钟)
条件语句的步骤、结构及功能。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用
6、布置作业
课本练习第3、4题
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
7、板书设计