3的倍数的特征教学设计

| 育祥

教学设计是指教育教学者在进行课程教学时,根据不同教学对象,制定合理的教学计划和教学内容。需要结合学生的认知能力和学习特点,根据学生的年龄、学科特点等因素,合理选择教学内容和教学方法。现在随着小编一起往下看看3的倍数的特征教学设计,希望你喜欢。

3的倍数的特征教学设计

3的倍数的特征教学设计【篇1】

教学目标:

1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

2、培养分析、比较及综合概括能力。

3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

教学重点:

掌握3的倍数的特征,正确判断一个数是否是3的倍数。

教学难点:

探索3的倍数的特征。

教学过程:

一、【创设情景,明确目标】(3分钟)

(一)创设情景,反馈预习

1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

P:16、24、85、102、138、170、

2的倍数:16、24、102、138、170

5的倍数:85、170

即是2的倍数又是5的倍数:170

师:说一说,你是怎么想的?

生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

3、教师板书课题:3的倍数的特征。

(二)明确目标,引领方法

1、出示学习目标(见学案),生自读目标。

2、同伴说说自己的理解,谈谈如何实现目标。

【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

二、【自主学习,同伴合作】(15分钟)

(一)自主学习,自我感知

1、小棒游戏,探究规律

师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

师:你来!

师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

学生摆出:51

师:51是3的倍数。我算的比计算器快吧?

师:能摆一个三位数吗?

学生摆出:312

师:312是3的倍数。

师:再来一个难点的。

学生摆出:1123

师:1123不是3的倍数。

师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

2、小组合作探究

(1)用3根小棒摆一个数,这些都是3的倍数吗?

师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

小组内合理分工,请大家看一下导学案的合作要求

①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

②用计算器算一算,将3的倍数圈出来。

③仔细观察表格,从中你发现了什么?

(2)用4根再摆出一些数,这些都是3的倍数吗?

(3)用6根再摆出一些数,这些都是3的倍数吗?

(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

预设

第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

第三族,用6根小棒摆:都是3的倍数。

问题:你发现了什么?

生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

师评价:关键要看小棒的根数,了不起的发现。

生:只要小棒的根数是3的倍数,这个数就是3的倍数。

师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

生:9根、12根、15根……都行——

(5)真的是这么回事吗?以9为例摆摆看。

师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

生:我用9根小棒摆出了36,36是3的倍数。

师:哪个小组还想出三位数、四位数或是更大的数?

生:我用9根小棒摆出了216,216是3的倍数。

生:我用9根小棒摆出了3015,3015是3的倍数。

师:说得完吗?

生:说不完。

师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

生:很合理。

师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

3、总结提升

师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

师:小组内交流一下。

小组活动。

师:谁来说说?

生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

4、探究原因,区别理解

(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

研究16

师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

(2)问:为什么3的倍数特征要看各个数位相加的和呢?

举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

138分一分,试一试,看看是不是3的倍数

一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

三、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、圈出下面是3的倍数的数:42、78、111、165、655、5988

3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

(预设:生1:1。

师:可以吗?还有其他答案吗?

生2:1,4,7都可以。

师:理由呢?

生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

师:恭喜你,三种可能都被你们猜中了!

师:如果它既是2的倍数,又是3的倍数呢?

生:24。

师:为什么只有24可以呢?

生:因为只有24既是2的倍数,又是3的倍数。)

(二)拓展训练,灵活创新

以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

13689362754、123456789

老师:如果用各个数位之和是3的倍数,比较麻烦。

但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

教师巡视,个别辅导。

(二)同伴讨论,互助共进

完成学案中“同伴合作,互助共进”内容。

重点交流学生所举的例子。

教师巡视,个别辅导。

【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

四、【师生共学,交流分享】(5分钟)

(一)小组展示,彰显风采

指名小组进行汇报。

(二)师生完善,共同提高

1、学生纠正、补充、质疑

2、教师精讲、点拨、评价

在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

【设计意图】通过教师的点拨完善学生对比的认识。

五、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、看一看哪些是3的倍数:42、78、111、165、655、5988

原来判断是用除法,现在用加法。改革了

3、不用计算,能快速算出来那个式子有余数吗?

802、3;342、3

4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

5、下面都是吗?789、345、654

都是,有什么特点?相邻、连续三个自然数。

是不是所有都是呢?举例:123.为什么呢?

654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

3的倍数的特征教学设计【篇2】

一、教材简析

《3的倍数的特征》是北师大版第九册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。

二、教学目标

1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

2.发展分析、比较、猜测、验证的能力。

三、教学思路

本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。

基于以上想法,本课设计以下两个大环节:

探究深化

四、教学过程

一.探究

这个部分,我为学生提供了四个探究平台:

(1)猜想

复习:2和5的倍数特征。猜测3的倍数的特征。

(2)观察

在百数表中找出所有3的倍数,通过观察否定猜想。

借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?

学生很快能发现所用数珠的颗数都是3的倍数。

当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。

如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?

经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。

(3)举证

我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。

小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?

经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。

所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。

(4)归纳

现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。

“各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。

二.深化

让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:

(1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?

(2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?

(3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?

如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……

刚才的练习有没有给你什么启发?

用你们的方法判断下面的这些数是不是3的倍数:

36996969336,1827457874。

判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。

各位老师,刚才我描述的这个教学过程,是让学生在探究3的倍数的特征过程中不但为学生积累了数学活动经验,而且也积淀了基本的数学思想:让学生逐步领悟到猜想、观察、举证、归纳是解决数学问题的一般方法。

谢谢!

3的倍数的特征教学设计【篇3】

[教学内容]3的倍数特征

[教学目标]

1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。

2、发展分析、比较、猜测、验证的能力。

[教学重、难点]发展分析、比较、猜测、验证的能力。

[教学过程]

一、3的倍数的特征的猜想

我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。

二、3的倍数的特征的探究

让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。

引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。

试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。

三、练一练:

第2题:

让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。

(1)30、45、54(2)30、54(3)30、45(4)30

四、实践活动:

让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。

[板书设计]

3的倍数的特征

3的倍数的特征:这个数各位数字之和是3的倍数。

3的倍数的特征教学设计【篇4】

一、教材分析

《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:

1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。

2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

根据以上的目标,我确定了本课的

教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:3的倍数的数的特征的归纳过程。

二、教法和学法。

根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

1、创设情景,激趣导入。

2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

3、采用让学生自主发现的学习方法。

苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。

三、教学过程。

一、复习导入。

为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

下面的数,哪些是2的倍数?哪些是5的倍数。

364、420、515、736、1028、905

让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)

为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

二、猜想验证。

由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

三、体验新知。

由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。

3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……

并引导学生进行观察发现:3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。

四、归纳总结。

在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

五、实践应用。

当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。

练习1:课本P19做一做1。

(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)

练习2:①P21页(5、6题),在基本练习的基础上我增设了3道发展题。

②把数娃娃送回家。题目如下:

这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

练习3:P21(7题)

7、在口里填一个数字,使每个数都是3的倍数。

口74口2口4465口12口1

(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)

(六)拓展延伸

为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。我说课完毕谢谢大家!

3的倍数的特征教学设计【篇5】

教学目标

1、知识与技能

理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

2、过程与方法

经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

3、情感态度与价值观

感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

教学重难点

【教学重点】

3的倍数特征。

【教学难点】

探究3的倍数特征的过程。教学过程

教学过程

一、以旧引新,竞赛导入

1、请说出2的倍数的特征、5的倍数的特征。

2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

3515820087651644122

既是2的倍数又是5的倍数的数有什么特征?

3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

二、猜想探索,归纳验证

1、大胆猜想:猜一猜3的倍数有什么特征?

(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

2、观察探索:出示第10页表格。

(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

(4)问题启发:

大家再仔细看一看,3的倍数在表中排列有什么规律?

从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

4、验证结论

大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

(1)尝试验证。(生写数,然后判断、交流、得出结论。)

(2)集体交流。

教师说一个数。如342,学生先用特征判断,再用计算器检验。

一个更大的数。4870599,学生先用特征判断,再用计算器检验。

5、巩固提高。

3的倍数的特征教学设计【篇6】

教学内容:

苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。

教学目标:

1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

教学重点:

认识3的倍数的特征。

教学难点:

研究并发现3的倍数的特征。

教学准备:

准备计数器教具和学具。

教学过程:

一、激活经验

1.复习回顾。

提问:2和5的倍数有哪些特征?

回顾一下,我们是怎样发现2和5的倍数的.特征的?(板书:找出倍数——观察比较——发现特征)

2.引入课题。

谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)

二、学习新知

1.提出猜想,引导质疑。

引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或O.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)

许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)

质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)

2.利用经验,组织探究。

(1)找3的倍数。

(2)探索特征。

3.学生归纳,强化认识。

追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?

让学生读一读板书的结论。

强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

4.阅读“你知道吗”。

启发:当你发现3的倍数的特征时,你对数学有什么感觉?

谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式)现在发现的完全数都有什么特征?

三、练习巩固

1.做“练一练”第1题。

2.做“练一练”第2题。

3.做练习五第8题。

4.做练习五第9题。

5.做练习五第10题。

四、课堂总结

提问:今天的学习你又有什么收获和体会?

判断3的倍数的方法,和判断2、5的倍数不同在哪里?

3的倍数的特征教学设计【篇7】

教学目标:

1、在探索活动中,观察发现3的倍数的特征。

2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。

教学重点:观察发现3的倍数的特征

教学难点:运用2、3、5的倍数的特征

教学过程;

活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

2、观察3的倍数,你发现了什么?先独立完成,看谁找的快

教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。

生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生二:十位上的数也没有什么规律。

生三:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

活动三:试一试

在下面数中圈出3的倍数。

284553873665

活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。

361754714548

2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

活动五:实践活动

在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。

板书设计:

3的倍数的特征教学设计【篇8】

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

(二)核心能力

在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

(三)学习目标

1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

(四)学习重点

探索3的倍数的特征。

(五)学习难点

归纳举证3的倍数的特征

(六)配套资源

百数表、计算器

二、教学设计

(一)课前设计

(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

(2)自制一张百数表。

(二)课堂设计

1.复习引入

师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?

学生自由发言,重点引导学生回忆知识形成的过程。

小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。

师:这节课我们来研究“3的倍数的特征”。(板书课题)

【设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】

2.问题探究

(1)找3的倍数

师:研究“3的倍数的特征”,你们准备怎样研究?

生自由发言。

师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

(2)全班交流、讨论

①发现问题

学生展示圈好的百数表。

师:说说你们的发现?

预设:只看个位不行。

师:为什么不行?

横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

②分析问题

师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

学生自由发言,引导学生斜着看。

师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

生独立观察、发现。

【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】

③解决问题

师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

小组合作交流后全班汇报。

(3)归纳3的倍数的特征

师:你们的发现和猜想是什么?

小组汇报,引导学生评价补充。

引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

生汇报验证的过程。

师:举什么样的例子既简单又有代表性?

举的例子包含有两位数、三位数、四位数……,多举几个

师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】

3.巩固练习

(1)课本第11页“练习二的第3题”

圈出3的倍数。

92753620665305177999999

11149165598865513122227203

(2)课本第10页“做一做”

(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

请说明理由。

先独立完成,然后同桌合作操作验证。

4.全课总结

师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

在探究的过程中我们遇到了什么新问题?

小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

3的倍数的特征教学设计【篇9】

教学内容:

教材19页内容,能被3整除的数的特征。

教学要求

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:能被3整除的数的特征。

教学难点:会判断一个数能否被3整除

教学方法:

三疑三探教学模式

教具学具:

课件等。

教学过程

一、设疑自探(10分钟)

(一)基本练习

1、能被2、5整除的数有什么特征?

2、能同时被2和5整除的数有什么特征?

(二)揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

(三)让学生根据课题提问题。

教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

(四)出示自探提示,组织学生自探。

自探提示:

自学课本19页内容,思考以下问题:

1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

2、能被2、3整除的数有什么特征?

3、能被2、3、5整除的数有什么特征?

二、解疑合探(15分钟)

1、检查自探效果。

按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

2、着重强调;

一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

三、质疑再探(4分钟)

1、学生质疑。

教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

四、运用拓展(11分钟)

(一)学生自编习题。

1、让学生根据本节所学知识,编一道习题。

2、展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

1、判断下列各数能不能被3整除,为什么?

72567951890111120373

2、58115207210451008

有因数3的数:()

有因数2和3的数:()

有因数3和5的数:()

有因数2、3和5的数:()

让学生说说怎么找的。

(三)全课总结。

1、学生谈学习收获。

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2、教师归纳总结。

学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

板书设计:

能被3整除的数的特征一个数各个数位上的数字之和能被3整除,

这个数就能被3整除。

    相关文章

    503826