分数除法应用题教学设计

| 育祥

教学设计是一种教育工作中必不可少的活动,它不仅有利于学生的学习和理解,还能帮助教师更好地准备教学,并使其有效地教育学生。帮助教师在教学过程中更好地掌握教学进度、教学策略和教学效果。现在随着小编一起往下看看分数除法应用题教学设计,希望你喜欢。

分数除法应用题教学设计

分数除法应用题教学设计精选篇1

教学目标:

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数式另一个数的几分之几。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重难点:

理解分数与除法的关系,会用分数表示两个整数相除的`商。

教学过程:

一、复习引入

1、口算。

(1)把8块饼干平均分给4个小朋友,每位小朋友分得几块?

(2)把4块饼干平均分给4个小朋友,每位小朋友分得几块?

口答列式及结果。

2、说说把一个数平均分成4份,应该用什么方法列式?

二、教学新课

1、教学例6。

(1)出示例6。

(2)把3块饼干平均分成4份,每人分得几块?应该怎样列式?

谈话:把3块月饼平均分给4个小朋友,每人能分得1块吗?

指出:每人分得的不满1块,结果可以用分数表示。

那么,可以用怎样的分数来表示3÷4的商呢?

(3)动手操作,解决问题。

谈话:请大家拿出准备好的3张同样大小的圆形纸片,把它们看作3块月饼,按题目要求来分一分,看结果是多少?

学生操作。

交流,并演示分法。

①一块一块地分,把每个圆片平均分成4份,每人每次分得1/4块,结果每人分得3个1/4块,也就是3/4块。

②一块一块地分之后,把12个1/4块合在一起平均分成4份,每份是3个1/4块,再把3个1/4块拼在一起,每人分得3/4块。

③把3个圆片叠在一起,平均分成4份,每份是3块的1/4,再把3个1/4块拼在一起,每人分得3/4块。

(4)如果把3块饼平均分给5个小朋友,每人分得多少块?怎样列式?

3÷5的商是多少?怎样用分数表示?

在小组中说说自己的想法。汇报各自想法。

板书:3÷5=3/5(块)

(5)归纳方法。

观察上面两个等式,你发现分数与除法有什么关系?

在小组中说说。

板书:被除数÷除数=被除数/除数

如果用a表示被除数,用b表示除数,这个关系式可以怎样写?

a÷b=a/b

b可以是0吗?为什么?

互相说说分数与除法的关系。

板书课题:分数与除法的关系。

2、试一试。

(1)独立完成填空。

(2)汇报结果,说说是怎样想的?根据什么得到的?

指出:两个数相除,得不到整数商时,可以用分数表示。

3、练一练。

(1)完成第1题。

独立填写,比较上下两行有什么不同?

指出:用分数表示整数除法的商,要用除数作分母,被除数作分子。

一个分数也可以看作两个数相除,分子相当于被除数,分母相当于分子。分数线相当于除号(2)完成第2题。

独立完成填写,集体核对。

说说是怎样想的?

三、巩固练习

1、完成练习八第1题。

在小组中说说是怎样想的?集体核对。

2、完成第2题。

独立填写,集体核对。

3、完成第3题。

独立填写,说说是怎样想的?

把1米长的彩带平均分成3份,求1份有多长,可以怎样列式?(1÷3)

把2米长的彩带平均分成3份,求1份有多长,可以怎样列式?(2÷3)

4、完成第4题。

独立填写,集体核对。

问:这两个问题有什么不同?

指出:每人分得这袋糖的的几分之几,是把单位“1”平均分成5分;每人分得几分之几千克,是把2千克平均分成5份。

5、完成第5题。

独立完成填写。

说说你是怎样想的?

联系分数的意义填空,根据分数和除法的关系列式。

四、课堂小结

今天这节课,学习了什么内容?互相说说自己的收获。

分数除法应用题教学设计精选篇2

内容:

本册教科书第28页例2和练习八第1~4题。

教学目的:

使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

教学过程:

一、复习

1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

1/5、3/4、7/16、9/9

2、口算下面各题。

1/6÷3、4/5÷2、3/8÷6、6/7÷2

提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

3、解答应用题。

一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

指定一名学生列式解答。

二、新课

揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

1、出示例题。

一辆汽车小时行驶18千米,1小时行驶多少千米?

提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

指名列出算式,教师板书:18÷。

2、教学整数除以分数的计算方法。

教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)

提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)

提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

18÷==45(千米)

写出答案“答:汽车1小时行驶45千米。”

3、引导学生小结。

“整数除以分数,等于整数乘上除数的倒数。”

三、看教科书中新课内容后试算

全体学生独立计算“做一做”中的练习题:

12÷ 24÷

集体订正计算过程及结果,并提问一个数除以分数的法则。

四、课堂练习

在练习本上计算练习八第1、2题,然后订正计算结果。

五、总结

今天学习了什么新知识?

整数除以分数的计算法则是什么?

计算整数除以分数应注意什么?

六、布置作业

1、阅读教科书第28~29页的内容。

2、在练习本上做练习八第3、4题。

分数除法应用题教学设计精选篇3

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页"做一做"

分数除法应用题教学设计精选篇4

一、教学内容:

分数与除法,教材第65、66页例1和例2

二、教学目标:

1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点:

1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:

圆片、多媒体课件。

五、教学过程:

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

(三)教学实施

1.学习教材第65 页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

(3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

( 3)加深理解。(课件演示)

老师:4(3)块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4)巩固理解

① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

4.归纳分数与除法的关系。

( 1)观察讨论。

请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2)思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3)用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)

②1米的8(3)等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

②1米的4(3)与3米的4(1)一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()

(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

分数除法应用题教学设计精选篇5

教学目标

1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

教学重点、难点

1、理解掌握分数与除法的关系。

2、会对假分数与带分数进行正确互化。

教学过程

活动一:创设情境,引导探索。

师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮__同学分一分蛋糕吗?

生:愿意!

师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

师:大家拿出练习本来计算这个商是多少?

生:3(1)

师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

即:1÷3=3(1)(个)

答:每人分得3(1) 个。

活动二:剪一间,拼一拼。

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份]

③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]

④列一列:怎样用算式表示分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)

答:每人分得4(3) 张。

观察刚才所得结果:

1÷3=3(1) 3÷4= 4(3)

讨论、感知关系

讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

被除数÷除数= 被除数/除数

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

学生回答,师板书:a÷b= a/b

师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

生:不可以,因为这里的b≠0

师:左侧b≠0,那么右侧的b是否可以是0?为什么?

师:讨论完后,教师用红色粉笔标上: b≠0

活动三:总结提升,归纳关系。

1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

2、判断:“分数就是除法,除法就是分数”这句话对不对?

活动四:课堂检测(一)

1、填空:课本P39试一试1。

2、用分数表示下面各式的商。

1÷4= 3÷4= 8÷3= 7÷3=

1÷7= 13÷4= 5÷2= 4÷9=

活动五:假分数带分数互化。

师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

生:小组讨论思考

师:以7/3为例讲解,课本P39 T 2、3

师生共同总结互化方法。

1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

活动六:课堂检测(二)

课本P40 练一练 的2、3。

课后作业

用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

分数除法应用题教学设计精选篇6

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)3(人)

19÷5=3(组)4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:

(1)余数要小于除数;

(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数x商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)2(人)

18÷5=3(组)3(人)

19÷5=3(组)4(人)

20÷5=4(组)

余数一定要比除数小。

分数除法应用题教学设计精选篇7

教学目标:

1、使学生充分理解分数混合运算的运算顺序,明确分数混合运算与整数混合运算的关系,并能正确、熟练地进行计算。

2、能运用所学的有关分数混合运算的知识解决生活中的实际问题,感受解决问题方法的多样性与灵活性,提高计算能力和解决问题的能力。

教学重点:

能用所学知识解决生活中的实际问题。教学难点:能运用多种方法解决生活中的实际问题。教具准备:多媒体,小黑板。

教学过程:

(一)情境引入,回顾再现。

陈爷爷每天绕操场跑6圈,2分钟可以跑半圈。照这个速度,陈爷爷每天跑步要用多少时间?

学生解答:6÷(1/2÷2)=6÷1/4=24(分)

师:这就是我们学过的有关分数混合运算的知识,这节课,我们就来进行相应的练习。

(二)分层练习,强化提高。

1、练习九的第1题,。提示:对于三步计算的题来说,如果选择比较合理的算法,也只要两步就能完成计算。

2、计算下面各题

2/9x0.375÷6/7

4÷ 8/3 – 0.6

引导学生注意:遇到小数计算,要先化成分数再进行计算。

3、解下列方程

5X=15/19

2/3X÷1/4=12

4、这篇文章太长了,3小时才录入了1/3。照这样的速度,李叔叔工作8小时,可以录入这篇文章的几分之几?还剩几分之几没有完成?

(对于本题来说,如果学生列成8÷3x1/3也是对的。)

5、练习九的第10题。

要求学生按照指定的程序计算,再通过比较,有所发现并作出解释。如果计算正确,就能发现得数等于原来的数。其原因是2/

3、3/4的倒数与1/2的积正好是1。

(三)自主检测,评价完善

出示检测题卡,让学生独立完成后,集体交流纠正。

(四)归纳小结,课外延伸

1、通过这节课的练习,你掌握了哪些知识?

2、把你的感受写一写,写成一篇周记的形式。

分数除法应用题教学设计精选篇8

教学目标:

1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;

2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。

教学重点:

找准单位“1”,找出数量关系。

教学难点:

能正确地分析数量关系并列方程解答应用题。教学过程:

一、谈话激趣,复习辅垫

1.找出单位“1”,写出数量关系式

(1)杨树的棵数是柳树的1/3

(2)红花朵数的1/2相当于黄花的朵数。

(3)白兔只数的5/6是黑兔的只数。

(4)一批化肥运走3/8。

2.师生交流

师:同学们,你们知道在我们体内含量最多的物质是什么吗?(水)对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。

师:你能算出自己体内的水分吗?(学生回答)师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?生回答后出示:儿童的体重x4/5=儿童体内水分的重量

35x4/5=28(千克)

师:谁还能根据另一个信息写出等量关系式?成人的体重x2/3=成人体内的水分的重量

3.揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、引导探究,解决问题

1.课件出示例题。

2.合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3.学生汇报

生1:根据数量关系式:儿童的体重x4/5=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)生2:直接用算术方法解决的,知道体重的4/5是28千克,就可以直接用除法来做。

28÷4/5=35(千克)

4.比较算术做法与方程做法的优缺点。

5.对比小结

和前面复习题进行比较一下,看看这道题和复习题有什么异同?

(1)看作单位“1”的数量相同,数量关系式相同。

(2)复习题单位“1”的量已知,用乘法计算;例1单位“1”的量未知,可以用方程解答。(或用除法计算)

(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试:一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?单位“1”是已知还是未知的?

根据学生回答画线段图。根据题中的数量关系找学生列出等量关系式。学生根据等量关系式列方程解答(找学生板演,其他学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、联系实际,巩固提高

1.练一练:

(1).小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

(2).一个修路队修一条路,第一天修了全长的2/5,正好是160米,这条路全长是多少米?

2.对比练习

(1)一条路50千米,修了2/5,修了多少千米?

(2)一条路修了50千米,修了2/5,这条路全长是多少千米?

(3)一条路50千米,修了2/5千米,还剩多少千米?

四、全课小结畅谈收获

(教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。)

分数除法应用题教学设计精选篇9

教学设想:

1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

教学目标:

1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

2、培养学生动手操作、合作交流和灵活运用知识的能力。

3、通过学习,培养学生转化的数学思想和勇于探索的精神。

教学重点:

理解分数与除法的关系。

教学难点:

具体体会每一个商的由来和表示的含义。

教学过程:

一、感知关系

1、问题:把6米长的绳子平均分成3段。每段长多少米?

把1米长的绳子平均分成3段。每段长多少米?

提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

板书:被除数÷除数=被除数/除数

二、探究关系

1、、验证关系

(1)通过动手操作验证

出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

反馈验证

引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

板书:3÷4=3/4

(2)运用分数意义验证

师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

出示例[2]:17分是几分之几小时?

引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

1÷60=1/60 17÷60=17/60(小时)

引导小结:分数与除法之间的关系,还可以用来转化名数。

2、揭示关系

师:通过刚才的验证,你得出了哪些结论?

①两个数相除,当商不是整数时,可以用分数来表示。

②被除数÷除数=被除数/除数。

师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

联系

区别

除法

被除数

除号

除数

是一种运算

分数

师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

三、巩固关系

1、强化分数与除法的关系。

① P.82 2

②(P.82 4)

③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时

④在括号里填上合适的数

( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )

2、比较练习,完成P.82 3

①学生选择条件,列式解答。

②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

四、总结提升

师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?

    相关文章

    505030