2023小学四年级数学必学知识点

| 业鸿

数学是一门基础学科,被誉为科学的皇后,四年级的小学生会学习哪些数学知识呢?下面是小编为大家整理的关于2023小学四年级数学必学知识点,欢迎大家来阅读。

2023小学四年级数学必学知识点

小学四年级数学知识点梳理

1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

2、在同一个平面内如果两条直线相交成直角,就是说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

3、如果两条直线都和第三条直线平行,那么这两条直线也(互相平行)。

4、如果两条直线都和第三条直线垂直,那么这两条直线也(互相平行)。

5、从直线外一点到这条直线所画的(垂直线段)最短,它的长度叫做这点到直线的(距离)。平行线之间的距离(处处相等)。

6、长方形:对边相等,四个角都是直角,两组对边分别平行。

7、长方形的周长=(长+宽)×2;长方形的面积=长×宽;

8、正方形:四条边都相等,四个角都是直角,两组对边分别平行。

9、正方形的周长=边长×4;正方形的面积=边长×边长。

10两组对边分别平行的四边形叫做平行四边形。其特点是:对边相等,对角相等。两组对边分别平行。

11、只有一组对边平行的四边形叫做梯形。其特点是:只有一组对边平行而另一组对边不平行。平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。

12、正方形是特殊的长方形;长方形和正方形是特殊的平行四边形。

13、平行四边形容易变形,具有不稳定的特性。

14、从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

15、两腰相等的梯形叫做等腰梯形。等腰梯形的两个底角相等。

16、两个完全一样的梯形可以拼成一个平行四边形。

17、两个完全一样的三角形可以拼成一个平行四边形。

18、我们学过的图形中,长方形、正方形、等腰梯形、菱形是对称图形。

19、过直线外一点只能画一条已知直线的垂线;

20、过直线外一点只能画一条已知直线的平行线。

数学四则运算的法则:

1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加

2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减

3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母,能约分的先约分,结果要化简

4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上,除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数

学好数学的方法和技巧总结:

1、主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

2、让数学课学与练结合

在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

四年级数学常考知识点

运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c a-b×c=a×c-b×c

鸡兔问题公式

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的.脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费__元,破损者不仅不给运费,还需要赔成本__元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

四则运算

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算

关于“0”的运算

1、“0”不能做除数; 字母表示:a÷0错误

2、一个数加上0还得原数; 字母表示:a+0=a

3、一个数减去0还得原数; 字母表示:a-0=a

4、被减数等于减数,差是0; 字母表示:a-a=0

5、一个数和0相乘,仍得0; 字母表示:a×0=0

6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商; 5÷0得不到商.(无意义)

四年级数学的知识总结

第一单元大数的认识

1. 10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。

相邻两个计数单位之间的进率是“十” ,这种计数方法叫做十进制计数法。

特别注意:计数单位与数位的区别。

2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。

3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。

4、按照我国的计数习惯,从右边起,每四个数位是一级。

6、亿以上数的读法

① 先分级,从高位开始读起。先读亿级,再读万级,最后读个级。

② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。

③ 每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。

7、亿以上数的写法

① 从最高位写起,先写亿级,再写万级,最后写个级。

② 哪个数位上一个单位也没有,就在那个数位上写0。

8、比较数的大小

① 位数不同的两个数,位数多的数比较大。

② 位数相同的两个数,从最高位开始比较。

9、求近似数

省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。

这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。

10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10,……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。

11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。

13、ON╱CE:开关及清除屏键,清除显示屏上的内容。

AC:清除键,清除所有内容。

第二单元公顷和平方千米

1、边长是100米的正方形面积是1公顷。

1公顷=10000平方米

2、边长是1千米的正方形面积是1平方千米。

1平方千米=1000000平方米

1平方千米=100公顷

3、从大单位变到小单位,乘进率。

从小单位变到大单位,除以进率。

4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如

香港特别行政区的面积约1100( );广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44( );操场、教室等较小的面积适合用平方米。如一个教室的面积约60( )。

5、长方形面积=长×宽

正方形面积=边长×边长

    相关文章

    515361