八年级数学说课稿

| 育祥

说课稿还可以通过使用教学资源、教具和多媒体等辅助材料,使观众对课程的内容和效果有更直观的了解。确保文字通顺、表达准确、逻辑清晰,以使听众对教学设计和思路有充分的理解和认同。现在随着小编一起往下看看八年级数学说课稿,希望你喜欢。

八年级数学说课稿

八年级数学说课稿精选篇1

尊敬的各位领导,各位老师:

大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。

一、教材分析

(一) 教材地位和作用

勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。

(二)教学目标

根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:

1、知识与技能方面

了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系, 并能简单应用。

2、过程与方法方面

经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。

3、情感态度与价值观方面

(1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(2) 通过研究一系列富有探 究性的问题,培养学生与他人交流、合作的意识和品质。

(三)教学重点难点

教学重点:掌握勾股定理,并能用它来解决一些简单的问题。

教学难点:勾股定理的证明。

二、学情分析

我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确 归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他 们的创造愿望。

三、教法选择

根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计" 观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅 助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。

四、学法指导:

为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方 法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思 想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。

五、教学过程

根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:

(一)创设情境,引入新课

一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:

星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,

∠ACB=90° ,你能用所学知识算出缆车路线AB长应为多少?

答案是不能的。然后教师指出,通过这节课的学习,问题将迎刃而解。

设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。 教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。

紧接着出示本节课的学习目标:

1、了解勾股定理的文化背景,体验勾股定理的探索过程。

2、掌握勾股定理的内容,并会简单应用。

(二)勾股定理的探索

1、猜想结论

(1)探究一:等腰直角三角形三边关系。

由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。

在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。

提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?

(2、)探究二:一般的直角三角形三边关系。

在课件中的格点图形中,利用面积,再次探究直角三角形的'三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。

设 计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学 生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。

2、证明猜想

目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证 明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a + b = c。即直角三角形两直角边的平方和等于斜边的平方、

设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。

3、简要介绍勾股定理命名的由来

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理, 但他比商高晚出生五百多年。

设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。

(三)勾股定理的应用

1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。

2、教学例1:课本66页探究1

师生讨论、分析: 木板的宽2、2米大于1米,所以横着不能从门框内通过.

木板的宽2、2米大于2米,所以竖着不能从门框内通过.

因为对角线AC的长度最大,所以只能试试斜着 能否通过.

从而将实际问题转化为数学问题.

提示:

(1)在图中构造出一个直角三角形。(连接AC)

(2)知道直角△ABC的那条边?

(3)知道直角三角形两条边长求第三边用什么方法呢?

设计意图:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边A C的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。

(四)、课堂练习 习题18、1 1、5。 学生板演,师生点评。

设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。

(五)课堂小结

对学生提问:"通过这节课的学习有什么收获?"

学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。

(六)达标训练与反馈

设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。

以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样 教",让学生人人参与,注重对学生活动的评价, 探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!

八年级数学说课稿精选篇2

各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

一、 说教材

(一)本节内容在教材中的地位和作用

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

数学思考:

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、说教法学法

1、教学方法

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的.原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、 说教学程序设计

(一)、创设情境,导入新课

活动1:观察:

展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置

加强“教、学”反思,进一步提高“教与学”效果。

四、说板书设计

采用了如下板书,要点突出,简明清晰。

一次函数

正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-bk,0)

五、说课后小结

实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识

八年级数学说课稿精选篇3

一、教材分析 :

(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的.逆定理解决相关问题。

情感态度:

1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神 (三)、学情分析: 尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点: 勾股定理逆定理的应用 难点: 勾股定理逆定理的证明

关键: 辅助线的添法探索

二、教学过程 :

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

八年级数学说课稿精选篇4

一、教学目标

1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.

2.会进行简单的二次根式的乘法运算.

3.使学生能联系几何课中学习的勾股定理解决实际问题.

二、教学重点和难点

1.重点:会利用积的算术平方根的性质化简二次根式.

2.难点:二次根式的乘法与积的算术平方根的关系及应用.

重点难点分析:

本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.

本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.

三、教学方法

从特殊到一般总结归纳的'方法,类比的方法,讲授与练习结合法.

1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要

的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段

利用投影仪.

五、教学过程

(一)引入新课 观察例子得到结果

类似地可以得到:

由上一节知道一般地,有=(a,b)

通过上面的例子,大家会发现 =(a,b) 也成立

(二)新课

积的算术平方根.

由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.

要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):

1、 2、 3、

说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。

2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)

化简二次根式的步骤

1、将被开方数尽可能分解出平方数;

2、应用=(a,b)

3、将平方项利用=化简

小结:1、积的算术平方根与二次根式的乘法的互逆性;

2、灵活应用他们进行二次根式的乘法运算及化简二次根式

作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题

八年级数学说课稿精选篇5

各位评委,老师们:

大家好!

很高兴参加这次说课活动,这对我来说是一次难得的机会,深切盼望专家和评委对我的说课内容提出宝贵意见。

今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。

下面,我从教材分析,教法与学法分析,教学过程分析,设计说明四个方面来谈谈我对这节课的教学设想。

一,教材分析

1,教材的地位和作用。

"生活中的平移"对图形变换的学习具有承上启下的作用。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。

2,教学重点与难点。

平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。

平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的难度,因此本课的难点是平移特征的探索及理解。

3,教学目标:

根据上述教材分析,考虑到学生已有的认知结构,心理特征,制定如下教学目标

(1)知识目标:

通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

(2)能力目标:

通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力。

(3)情感目标:

经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二,教法与学法分析

教学不只是传授知识,让学生单纯记忆前人的研究成果,更重要的是激发学生创造思维,引导学生去探究,发现结论的.方法。正如先生所说:"教是为了不教"。这样方能培养出创造性人材,这正是实施创新教育的关键,鉴于教材内容特性是探索平移特征,性质,便于进行生成性学习,故选用探究式教学主动学习的教学策略与方法以及动手实践,自主探索,合作交流的重要学习方式。引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。

另外,我还运用多媒体投影为师生的交流和讨论提供了平台。

三,教学过程分析

课堂结构(一)创景引趣(二)探究归纳(三)反馈练习(四)实际运用(五)感情点滴(六)布置作业六个部分。

(一)创景引趣

导语:同学们,你们小时候去过游乐园吗在游乐园中你们玩过哪些游乐项目在玩这些游乐项目时你们想过什么你们想过它里面蕴含着数学知识吗现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的(课件展示),观看游乐园内的一些项目,如:旋转木马,荡秋千,小火车,滑梯……,引出第三章内容,并进行初步分类,引出本节课研究内容:生活中的平移。)

(二)探究归纳

在引入的基础上,探索新知,(课件展示活动2),观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。(小组讨论)以上几种运动现象有什么共同特点鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角,把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。

(三)反馈练习

学生对所学知识是否掌握了呢为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。

(四)实际运用

为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活。这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。

(五)感情点滴

可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如"我发现了什么……我学会了什么……我能解决什么……"等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力。

(六)布置作业,结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实"学有价值的数学",达到"人人都能获得必需数学",另一部分是选做题让"不同的人在数学上得到不同的发展"。

四,设计说明

本节课以观看游乐园内的一些项目创设了在学生已有的知识经验基础上的情境,引出第三章内容,激起学生的求知欲,再以学生熟悉的几个事例引出本节课研究内容:生活中的平移。由学生分小组讨论,教师通过课件演示,学生在观察,探索的基础上归纳出平移的定义,特征,性质。这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念。学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索,合作交流等良好的学习习惯。然后利用一组练习题由易到难加以巩固,最后由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活。这是整节课的一条暗线,真正体现新课标的理念。本课的教学过程设计为:情境——问题——探究——反思(归纳)——提高,这充分体现了新课程理念数学课堂教学方式的根本转变。

以上是我对这节课的教学设想,恳请各位专家批评指正。

八年级数学说课稿精选篇6

尊敬的各位领导,各位老师:

大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。

一、教材分析

(一) 教材地位和作用

勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。

(二)教学目标

根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:

1、知识与技能方面

了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系, 并能简单应用。

2、过程与方法方面

经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。

3、情感态度与价值观方面

(1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(2) 通过研究一系列富有探 究性的问题,培养学生与他人交流、合作的意识和品质。

(三)教学重点难点

教学重点:掌握勾股定理,并能用它来解决一些简单的问题。

教学难点:勾股定理的证明。

二、学情分析

我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确 归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他 们的创造愿望。

三、教法选择

根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计" 观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅 助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。

四、学法指导:

为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方 法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思 想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。

五、教学过程

根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:

(一)创设情境,引入新课

一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:

星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,

∠ACB=90° ,你能用所学知识算出缆车路线AB长应为多少?

答案是不能的'。然后教师指出,通过这节课的学习,问题将迎刃而解。

设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。 教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。

紧接着出示本节课的学习目标:

1、了解勾股定理的文化背景,体验勾股定理的探索过程。

2、掌握勾股定理的内容,并会简单应用。

(二)勾股定理的探索

1、猜想结论

(1)探究一:等腰直角三角形三边关系。

由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。

在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。

提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?

(2、)探究二:一般的直角三角形三边关系。

在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。

设 计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学 生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。

2、证明猜想

目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证 明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a + b = c。即直角三角形两直角边的平方和等于斜边的平方、

设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。

3、简要介绍勾股定理命名的由来

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理, 但他比商高晚出生五百多年。

设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。

(三)勾股定理的应用

1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。

2、教学例1:课本66页探究1

师生讨论、分析: 木板的宽2、2米大于1米,所以横着不能从门框内通过.

木板的宽2、2米大于2米,所以竖着不能从门框内通过.

因为对角线AC的长度最大,所以只能试试斜着 能否通过.

从而将实际问题转化为数学问题.

提示:

(1)在图中构造出一个直角三角形。(连接AC)

(2)知道直角△ABC的那条边?

(3)知道直角三角形两条边长求第三边用什么方法呢?

设计意图:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边A C的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。

(四)、课堂练习 习题18、1 1、5。 学生板演,师生点评。

设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。

(五)课堂小结

对学生提问:"通过这节课的学习有什么收获?"

学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。

(六)达标训练与反馈

设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。

以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样 教",让学生人人参与,注重对学生活动的评价, 探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!

八年级数学说课稿精选篇7

一、说教材(教材分析)

《正方形》这节课是九年义务教育人教版数学教材初二年级下册第十九章章第二节的内容.纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线,三角形,平行四边形,矩形,菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察,操作等活动经验的基础上出现的.目的在于让学生通过探索正方形的性质,进一步学习,掌握说理和进行简单推理的数学方法.这一节课既是前面所学知识的延续,又是对平行四边形,菱形,矩形进行综合的不可缺少的重要环节.

教材从学生年龄特征,文化知识实际水平出发,先让学生动手做,动脑思考,然后与同伴交流,探索,总结归纳,升华得出正方形的概念,再由概念去探索正方形的性质.这样的安排使学生在整个学习过程中真正享受到探索的乐趣.

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形,矩形,菱形之间的内在联系.根据大纲要求及本班学生的实际情况,本节课制定了知识,能力,情感三方面的目标.

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算,推理,论证;

(二)能力目标:

1、通过本节课培养学生观察,动手,探究,分析,归纳,总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学,严谨,理论联系实际的良好学风;

2、培养学生互相帮助,团结协作,相互讨论的团队精神;

3、通过正方形图形的'完美性,培养学生品格的完美性.

二、说学生:(学生分析)

这节几何课是在初二年级三班上的一节课.该班学生基础一般,但上课很积极,有很强的表现欲,通过前一学期的培养,具有一定的独立思考和探究的能力.但该班学生的口头语言表达能力方面稍有欠缺,所以在本节课的教学过程中,设计了让学生自己组织语言培养说理能力,让学生们能逐步提高.

三、说教法(教法分析)

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法.

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念.通过观察,讨论,归纳,总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义,性质理解,巩固加以升华.

整个教学过程中教师通过提问,观察,思考,讨论,充分调动学生非智力因素,让学生在老师的引导下自始至终处于一种积极思维,主动学习的学习状态.而教师在其中当好课堂教学的组织者.

四、说学法:(学法分析)

本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手,观察,思考,分析,总结得出结论.在小组讨论中通过互相学习,让学生体验合作学习的乐趣.

五、说教学程序:

(一)(第一环节)相关知识回顾

以提问的形式联系平行四边形,矩形,菱形的定义及性质之后,引导学生发现矩形,菱形的实质是由平行四边形角度,边长的变化得到的.(由课件演示以上两种变化)并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形让学生们通过手上的学具演示以上两种变化,从而得出结论.

(二)(第二环节)新课讲解

通过学生们的发现引出课题"正方形"

1、(第一个知识点)正方形的定义

引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边,角的变化演变出正方形的过程.请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形.(投影仪显示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另一个定义:一个角是直角的菱形是正方形.或者把一个角是直角与平行四边形组合成矩形,再加上一组邻边相等这个条件,可得正方形的第三个定义:一组邻边相等的矩形是正方形;此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质.

{2、正方形的性质(由课件演示)

定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直,平分,每条对

角线平分一组对角.}(不念)以上是对正方形定义和性质的学习,之后进行例题讲解.

{ 3、例题讲解(由课件显示)

求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.}(不念)此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知,求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写.从而培养他们语言表达能力,让学生的个性得到充分的展示

4、课堂练习(然后我又设计了两种不同类型的练习题

第一部分设计了三道有关正方形的周长,面积,对角线,边长计算的填空,目的是对正方形性质的进一步理解,并考察学生掌握的情况.

第二部分是选优题,通过这道生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活.

5课堂小结(由课件演示)

此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美.

6、欣赏实际生活中正方形的应用(课件显示)

第6个环节是我设计了一些正方形在实际生活中应用的图片,在优美的音乐中欣赏实际生活中正方形的应用,再一次让学生们感受正方形的美.

7、作业设计(我设计的是教材159页,第12,14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识.

六、说教学评价:

本课的教学注意挖掘教材中培养创新意识的素材,利用计算机辅助教学,为学生营造一种创新的学习氛围.把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性,积极性,体现学生的主体地位.同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神.

七、教学反思

一、本节课通过课件播放平行四边形一个角的变化和一组对边的变化得到正方形,成功的达到了学生对正方形直观认识,并轻松地总结出正方形的性质.

二、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言.

三、通过一道拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作,合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验.

八年级数学说课稿精选篇8

一、 说教材:

“圆的认识”是“人教版”六年级上册第四单元的内容,它是几何初步知识内容,既是一节起始课,也是后继学习“圆的周长”、“圆的面积”、“圆柱”、“圆锥”的基础。

《圆的认识》是在学生学习了直线图形的认识和面积计算,以及对圆有了初步的感性认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形和直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的认识,不仅能加深学生对周围事物的理解,提高解决简单实际问题的能力,也为今后学习圆的周长、圆的面积、圆柱、圆锥等知识打好基础。

二、说教学目标:

结合本节课的内容特点,本人确定了以下的教学目标:

1、知识与技能:通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。了解、掌握多种画圆的方法,并初步学会用圆规画圆

2、过程与方法:通过想象与验证、观察与分析、动手操作、合作交流等活动,使学生体会到圆的各点分布均匀性和广泛的对称性,同时获得思维的进一步发展与提升。

3、情感态度价值观:结合具体的情境,体验数学与日常生活的紧密联系,并能用圆的知识来解释生活中的简单现象。

三、说重点、难点:

教学重点:理解和掌握圆的特征,学会用圆规画圆的方法。

教学难点:理解“圆上”的概念,归纳圆的特征。

教学准备:

学生:剪刀、白纸若干张、彩笔、圆规、直尺、圆形物体一个

教师:课件、圆规、直尺、圆形纸片

四、说教法、学法:

教法:在本节课中要注重学生的学习行为方式的改变、课程资源的开发利用。从欣赏圆、发现圆开始,深深吸引学生,课堂教学中,要注意调动学生的多种感官参与学习,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。教给学生学法:情境中欣赏圆的魅力——合作中探究圆的特征——介绍中体验圆的数学文化——实践中感受圆的数学价值,大胆放手,把一切探究的机会交给学生。学生不仅学得轻松活泼,而且较好地体现了新课程的教学理念。

五、说教学过程

对本节课的教学,我精心设计了二个主要环节。

(一)、创设情境、导入新课

我们以前都和哪些平面图形做了朋友?这些图形都是用什么线围成的?简单说出这些图形的特征。

(二)、突出主体、探究新知

1、初步感知圆

首先我会让学生举举生活中的例子。“日常生活中哪些物体的形状是圆的?”学生可能会说出:硬币、光碟、路标、钟面、车轮等,这些物体的形状都是圆的。让学生初步感知圆,培养学生的'空间想象力。同时,我会出示一些生活中的圆形图片,让学生感受到圆就在我们身边。

接着,我会出示的两组图形,第一组是长方形、正方形、三角形、平行四边形、梯形,第二组就是圆形,通过对比,可以清楚地看到,第一组图形是由线段首尾连接所围成的,而圆是由曲线所围成的,形成正确表象——圆是一种平面上的曲线图形。

通过课件展示圆的画面及各部分的名称,同时根据课件图片让学生分析圆上,圆内,圆外和圆心各指什么?我在适时讲解加深学生的理解

2、认识圆的各部分名称和特征

活动一:小组合作探究

(1)以四人为一小组,一起动手折一折、量一量、比一比、画一画,你发现了什么?并在小组内交流。

(2)把你们的发现,准备与大家一起交流分享。

(1)找圆心

首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”学生亲手操作后,发现所有的折痕都会相交于一点。这些折痕的交点,正好在圆的正中心,我们数学上把这一点叫作圆心,用字母“O”来表示。(设计意图:通过学生的直观操作,使学生的学习过程“动作化”,调动学生多种感官参与学习,并有意设置一些认知冲突,让学生积极主动地参与知识的形成过程。)

(2) 认识半径、直径

连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。

通过圆心并且两端都在圆上的线段叫直径,直径一般用字母d表示。在这里因为有半径的知识做基础,我会尝试放手,让学生小组合作探讨直径的知识,

活动二:一起动手

1、请同学们在圆纸片上画出半径,10秒钟,看能画出多少条?直径呢?

2、请同学们用直尺量一量画出的半径有多少厘米?你发现了什么?直径呢?

3、请分四人小组讨论在同一个圆里,半径有什么特征?直径有什么特征?它们之间有什么关系? 通过测量和比较,让学生理解和掌握在同一个圆里半径和直径之间的关系,让学生用含有字母的式子表示半径是直径的一半、直径是半径的2倍关系。得出d = 2r与r = d/2的字母公式,并在练习中通过填表强调了圆内半径与直径的对应关系,还要求学生在圆内一些线段中,找出半径和直径。(设计意图:合理发挥学生的主体作用,让学生动脑、动手、动口、动眼,自主探索知识的形成与发展,并及时巩固学习成果。)

口答:

3、掌握画圆方法

在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。我会在课本知识的基础上在向外延伸。我会向学生提问:刚才同学们画圆都用到了什么方法和工具啊?和大家交流借鉴一下经验好吗?学生会说出不同的方法和工具。如硬币。线 ,笔,圆规等。此时我会装做很着急的样子向学生问:老师想画一个8厘米的圆可不可以用一元钱的硬币呢?为什么啊?生:学生会从大小不符合等方面来说明不行。此时我又会说那我要是想画一个6厘米的圆又该怎么办呢?为什么啊?生:可能会比较困难。(我在适时从大小符合以及方便等方面慢慢导出学生说出用圆规画圆)。接下来我在小结得出画大小不同的圆,我们通常用圆规来画。并播放课件圆规确定半径的方法以及圆规画圆的方法的过程。(并得出结论用圆规画圆可以画出大小不同的圆,也可以得到我们想要的圆。再次论证得出半径越大,圆就越大,半径越小,圆就越小。

最后,我根据以上所学的内容,为学生准备了两道习题。来加深所学的知识,一是让同学们1、用圆规画出半径是2厘米的一个圆,并用字母O、r、d分别标出它的圆心、半径、和直径。2、画出直径是4厘米的一个圆。

实际应用:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为10米的圆吗? 我会适时加以巩固,在所学知识基础上史料连接,有关圆的知识,名言等,通过课件展示使学生体会圆所蕴涵的历史和文化积淀,激发学生学数学,用数学的激情以及在以后的数学学习中,更加用心。圆与生活又有很大的联系。通过解决生活中的实际问题,使学生感到成功的快乐。学数学,用数学,数学无处不在。

巩固练习

1、填空。

(通过这道题让学生回顾了本节课所学内容,检验了学生对所学内容的掌握情况)

2、判断,并说为什么。

(这些题进一步加深对圆的认识,并培养学生分析、推理和判断能力。)

板书设计:

圆的认识

图略

圆心O 半径r 直径d

d=2r或r=d/2

圆规画圆:定半径、定圆心、旋转一周

    相关文章

    585030