勾股定理八年级数学说课稿

| 福萍

勾股定理八年级数学说课稿如何写?作为一名教学工作者,往往需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。为了大家学习借鉴,下面小编给大家整理了勾股定理八年级数学说课稿相关内容。

勾股定理八年级数学说课稿

勾股定理八年级数学说课稿(精选篇1)

尊敬的各位评委、各位老师:大家好!

今天我说课的内容是人教版八年级下册第二章第一节第一课时《勾股定理》,

下面我将从教材分析、学情分析、教学方法、教学过程、板书设计五个方面对本节课进行阐述。

一、教材分析

(一)教材的地位与作用

勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形取得进一步的认识和理解。同时,勾股定理在生产、生活中也有很大的用途。

(二)教学目标

基于以上分析和数学课程标准的要求,制定了本节课的教学目标:

1、知识目标:

1.掌握直角三角形三边之间的数量关系

2.掌握割补法计算面积的过程

3. 能利用勾股定理进行简单的几何计算。

2、能力目标:在探索勾股定理的过程中,体会数形结合和特殊到一般的思想方 法,培养学生的观察力、抽象概况能力。

3、情感目标:使学生从经历定理探索的过程中,感受数学之美,探究之趣,培养合作意识和探索精神。

(三)教学重、难点

重点:用面积法探索勾股定理,理解并掌握勾股定理

难点:用拼图方法证明勾股定理

突破难点的关键:“拼图法”和“面积法”的成功运用

二、学情分析

在认知状况上,学生对几何图形的观察和分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

在心理特征上,现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。

三、教学方法

根据本节课的教学内容和学生的认知结构,我将以引导探究法为主,实验法讨论法为辅,由浅入深,由特殊到一般地提出问题,鼓励学生观察分析、自主探索、合作交流,让学生经历数学知识的形成与应用过程,同时以多媒体辅助教学,直观呈现教学素材,更好激发学生的学习兴趣。

四、教学过程

(一)、创设情境,引入新课

首先引导同学们观察在2002年的国际数学家大会上采用的弦图会徽,由此设问,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?用生动有趣的图画,点燃学生的求知欲,引领学生进入学习情境。

(二)、师生互动,探究新知

活动一:

首先我将介绍毕达哥拉斯发现勾股定理的过程利用ppt课件展示毕达哥拉斯的发现和探究过程,同时提出问题“这三个正方形之间的面积有什么关系呢?从中可以转化到等腰直角三角形三边在数量上有什么关系呢?”学生个体或学生间观察交流,同时以ppt直观图像辅助学生思考,在观察计算过程中同学们能轻松地得出

即得出图中正方形A、B、C所围等腰直角三角形三边之间的特殊关系

活动二:

等腰直角三角形是特殊的直角三角形,在得出等腰直角三角形的三边关系之后,我将进一步提出问题“这一结论是不是所有的直角三角形都具备呢?”于是展开进一步探究。在这一过程中,我将设计同学们合作交流共同探究,首先以小组为单位,小组内合作在单位网格上画出以格点为顶点,直角边分别是3、4的直角三角形。仿照上一图形,以这个直角三角形的三边为边长向外作正方形,并计算三边构成的正方形的面积。在小组合作过程中,画图以及

利用小方格计算正方形S1、S2的面积对学生来说很简单但就如何计算正方形S3的面积,对大部分同学来说是一个难点,在计算其面积时就要求同学们具有转换思维进行分割或增补成易算面积图形,也是本节课的一个难点。

基于以上分析我将着重引导同学们运用割补法计算正方形S3的面积,首先我将鼓励学生大胆猜想,在留给学生思考的时间后,展开小组讨论,到了一定的程度,我到各小组巡视,参与讨论,有针对性的启发和指导,这时必定会有一些学生能够正确的将图形进行割补。小组代表发言之后,为了使学生更直观的感受割补法,我将用多媒体进行展示,并进行进一步的讲解,加强同学们的理解。

从而观察计算结果可以得出

如果直角三角形两直角边分别为a,b,斜边为c,那么

也有

活动三

定理证明

以上环节都是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。在定理的证明过程中,我将引导学生用四个全等的直角三角形拼凑图形,尝试不覆盖的拼成一个大的正方形,引导从面积的角度进行探索。在学生充分讨论后我将展示利用面积相等的方法证明定理的过程。同时鼓励同学们学习教材,寻求不同的证明方法,并对学生的正确做法给予表扬,使学生在学习过程中,感受到自我创造的快乐,从而突出本节知识重点。同时分享其他证明方法发散学生的思维。

得出勾股定理: 直角三角形两直角边的平方和等于斜边的平方。

设计意图:在探索定理的过程中, 为了突出本节重点,解决难点,我按照两个层次设计探索过程。第一方面由等腰直角三角形到一般直角三角形三边关系的研究,体现从特殊到一般的方法,第二方面引导学生用割、补等方法计算正方形C面积到用拼图的方法探索直角三角形三边关系,展示由简单到复杂的思想,探索出勾股定理。

(三)、回归生活,应用新知

随堂测试是针对勾股定理的直接运用,提高学生对新知识的理解,运用,巩固。

(四)、归纳小结,布置作业:

提问的方式回顾本节课的重点

【小结】1、直角三角形三边有何数量关系?

2、勾股定理主要用于解决什么问题?

课后作业:

课后作业,我设计了必做题和选做题,必做习题,面向全体学生,强化学生掌握在直角三角形中已知任意两边,都能利用勾股定理求出第三边的重要解题方法,以及定理的实际应用。选做题面向学有余力的学生,注重思维开放性的培养。

五、板书设计

本节课板书设计分为二个部分,左边是定理的探究过程以及定理的证明,右边是巩固练习题,板书设计旨在简单清晰重难点突出,有利于同学更好的把握。

我的说课到此结束,谢谢各位评委老师的聆听!

勾股定理八年级数学说课稿(精选篇2)

一、教材分析

(一)教材所处的地位

本节课内容选自北师大版义务教育教科书数学八年级上册第一章第一节的第一课时。本节课是一堂探究活动课,是在学生在已经掌握了直角三角形有关性质的基础上学习的。勾股定理是直角三角形中一条非常重要的性质,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,是连接数与形的桥梁。因此学好本节课不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活和生产中有着广泛的运用。

(二)教学目标

根据以上对教材的分析和新课标的要求,结合学生已有的认知结构、心理特点,我确立了如下的教学目标:

(1)知识与技能目标:了解勾股定理的发现过程,掌握勾股定理了的内容,会初步运用勾股定理进行简单的计算和实际运用。

(2)过程与方法目标:在探索勾股定理的过程中,让学生经历“观察一猜想一归纳一验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

(3)情感态度与价值观:通过对勾股定理的探索分析,促使学生养成勇于提出问题和分析问题的习惯和严谨的学习态度;鼓励学生参与整个教与学的过程,激发学生的求知欲,增强学生学习数学的兴趣和信心;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)教学重点、难点

通过解读新课标和分析教材,我把本节课的重点、难点确定如下:

教学重点:探索勾股定理

教学难点:以直角三角形为边的正方形面积的计算。

二、教法分析

针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题一实验操作一归纳验证一问题解决一课堂小结一布置作业六部分。有教法就有相应的手段,本节课采用的有:多媒体辅助教学、直观教具、讨论式教学和尝试式教学等。

三、学情与学法分析

1、学情分析

八年级学生整体个性活跃,对新事物充满好奇,课堂参与意识较强。本节课虽然是新课,但学生在之前已经学习了直角三角形及其有关性质,具有了较好的知识基础,并通过前面的学习,学生已具备了一些平面几何的知识,能够进行一般的推理和论证。

2、学法分析

在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

四、教学过程分析

(一)提出问题

首先创设这样一个问题情境:如图1-1,从电线杆离地面8m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6m,那么需要多长的钢索?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

(二)实验操作

1、投影课本图1-2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于某某,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1-3,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边某某的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边某某为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

(三)归纳验证

1、归纳通过对边某某为整数的等腰直角三角形到一般直角三角形再到边某某含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

(四)学以致用

为了检测学生对本节课目标达成情况和加强学生能力的培养,我设计了一组有坡度的练习题:A组是简单的填空题,考察定理的直接应用,B组求阴影部分的面积,C组让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦,体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

(五)课堂小结

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

(六)布置作业

课本P6习题1.11,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。

五、板书设计

我的板书分为三部分,第一部分板书本节课的知识点,并用不同颜色的粉笔标出,第二部分为讲评区,第三部分为范例板书和学生练习区。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。

勾股定理八年级数学说课稿(精选篇3)

今天我说课的题目是选自人教版八年级数学第_章第一节的内容:勾股定理。

我将从以下这几个方面进行本节课的阐述:教材分析、学情分析、教法、学法指导、教学过程设计以及教学反思。

下面请大家和我共同走进教材。

(一)教材分析

⒈教材的地位和作用

《勾股定理》是人教版新课标八年级数学第_章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关_质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验_和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

⒉教学目标

根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历“观察-猜想-归纳-验_”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。

情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。

3.重点和难点

勾股定理的学习是建立在掌握一般三角形的_质、直角三角形以及三角形全等的基础上,是直角三角形_质的拓展。本节课主要是对勾股定理的探索和勾股定理的_。勾股定理的_方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

因此本节课的重点:是勾股定理的发现、验_和应用。

八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手_作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课采用的是等积法_。由于学生之前没有接触过等积法_,他们对这种_方法感到很陌生,尤其是觉得推理根据不明确,不象_,没有教师的启发引领,学生不容易_想到。

因此本节课的难点:是用拼图方法、面积法_勾股定理。

(二)学情分析

八年级学生已初步具有几何图形的观察,几何_的理论思维能力。希望老师预设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际_作,使他们获得施展自己创造才能的机会。

(三)说教学方法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取引导探索法,由浅入深,由特殊到一般地提出问题。以导为主,采用设疑的形式,让学生通过观察、分析、讨论、_作、归纳,理解定理,提高学生动手_作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。

(四)说学习方法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导,我采用了如下的学法指导:

在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(五)说教学过程

根据学生的认知规律和学习心理,本节课分六个活动进行学习,为了扩大课堂容量节省时间提高课堂效率,拟采用多媒体教学。

【活动1】:(多媒体展示)欣赏图片了解历史

第一幅图片配上文字说明。

设计意图:这样的导入富有科学特_和浓郁的数学气息,激起学生强烈的兴趣和求知欲。

第二幅图片为2002年在我国_召开的第24届_数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。

设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。

第三幅图片为介绍古代勾和股。

设计意图:简单介绍勾股定理的历史,引出勾股定理这一课题。

学生,读一读和观察。

【活动2】:探索勾股定理

首先讲述毕达哥拉斯到朋友家做客的故事。(多媒体展示)

然后提出两个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。

{问题一}:在图中你能发现那些基本图形?

{问题二}:与等腰直角三角形相邻的正方形面积之间有怎样的关系?

(多媒体展示)探究一

{问题三}:如图,每个小方格的面积为1个单位,你能写出正方形a、b、c的面积吗?

{问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?

学生在_探究的基础上观察图片,计算面积,分组交流,猜想和归纳。

教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算c的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。因此需要教师的引导。

设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。学生会很积极的投入到探索这个问题的实践中。让学生并且尝试了从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。

“问题是思维的起点”,通过层层设问,引导学生发现新知。

(多媒体展示)探究二

{问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?如图,每个小方格的面积为1个单位,你能写出正方形a、b、c的面积吗?

将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。关注学生能否用不同的方法得到大正方形的面积。

学生计算,观察,猜想,语言表达猜想结论。

教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算c的面积时可能有一定的难度,此时又用到数学当中常见的割补法。因此需要教师的引导。

设计意图:学生通过探究a、b、c三个正方形之间的面积关系,进而发现、猜想勾股定理,并用自己的语言表达出来。这样的设计渗透了从特殊到一般的数学思想。发挥学生的主体作用,培养学生类比迁移能力及探索问题的能力,使学生在相互欣赏,争辩,互助中得到提高。

(多媒体展示)猜想:

如果直角三角形两直角边分别为a、b,斜边为c,那么a2b2=c2。

即直角三角形两直角边的平方和等于斜边的平方。

{问题六}:是不是所有的直角三角形都有这样的特点呢?

【活动3】:_勾股定理

师:这就需要我们对一个一般的直角三角形进行_。到目前为止,对这个命题的_方法已有几百种之多。下面我们就来看一看我国数学家赵爽是怎样_这个命题的。

{问题七}:请同学们拿出课前准备好的四个全等的直角三角形,记三边分别为a,b,c,然后拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形?

学生_思考的基础上以小组为单位,用准备好的四个全等直角三角形动手拼接。学生展示分割,拼接的过程。

教师深入小组参与活动,倾听学生的交流,帮助指导学生完成拼图活动。并请小组代表到黑板演示拼图过程,鼓励学生敢于发表自己的见解。

设计意图:通过这些实际_作,调动学生思维积极_,同时使学生对定理的理解更加深刻,学生能够进一步加深对数形结合的理解,拼图也会产生感_认识,也为论_勾股定理做好准备。

{问题八}:它们的面积分别怎样表示?它们有什么关系呢?

(多媒体展示)拼接图,面积计算

学生观察,计算,小组讨论。

在计算过程中,我重点在于引导学生分析图中面积之间的关系,得出结论:大正方形的面积=4个全等的直角三角形的面积小正方形的面积,从而运用等积法_勾股定理。(这样,既突破了难点,让学生感受到用等积法_勾股定理的奥妙。)

设计意图:给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动_,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。

师:我们现在通过推理_实了我们的猜想的正确_,经过_被确认正确的命题叫做定理。猜想与直角三角形的边有关,我国把它称为勾股定理。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我古代数学的骄傲。正因如此,这个图案被选为2002年在_召开的_数学大会的会徽。

【活动4】:应用勾股定理(多媒体展示)

(小组选择,采用竞答方式)

填空

p的面积=,

ab=x=

bc=

bc=

2、求下列图中表示边的未知数x、y、z的值。

3求下列直角三角形中未知边的长:

设计意图:首先是几道填空题和勾股定理的直接应用,这几道题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。

4、求出下列直角三角形中未知边的长度。

设计意图:规范解题过程。

5、小明的妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?(我们通过所说的29英寸或74厘米的电视机,是指其屏幕对角线的长度。)

设计意图:这是一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。

【活动5】:总结勾股定理(多媒体展示)

1.这节课你的收获是什么?

2.理解“勾股定理”应该注意什么问题?

3.你觉得“勾股定理”有用吗?

学生谈谈这节课的收获是什么,让学生畅所欲言。

教师进行补充,总结,为下节课做好铺垫。

设计意图:通过小结为学生创造交流的空间,调动学生的积极_,即引导学生培养学生从面积的角度理解勾股定理,又从能力,情感,态度等方面关注学生的整体感受。

【活动6】:布置作业(多媒体展示)

1.阅读教材第71页的阅读与思考-----《勾股定理的_》。

2.收集有关勾股定理的_方法,下节展示交流。

3.做一棵奇妙的勾股树(选做)

设计的意图:给学生留有继续学习的空间和兴趣。

(六)说教学反思

本课意在创设愉悦_的乐学气氛,始终面向全体学生“以学生的发展为本”的教育理念,课堂教学充分体现学生的主体_,给学生留下最大化的思维空间。注重数学思想方法的渗透,整个勾股定理的探索、发现、_都着意渗透数形结合,又从一般到特殊,从特殊回归到一般的数学思想方法。重视数学史教育,激发学生的爱国情感。数学问题生活化,用数学知识解决生活中的实际问题,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要老师帮助学生去理解、转化,而更多时候需要学生自己去探索、尝试,并在失败中寻找成功的途径。教学中,如果能让学生自己反思_与方法的合理_,那么效果会更好了。

板书设计:

18.1勾股定理

勾股定理:

如果直角三角形两直角边分别为a,b,

斜边为c,那么a2b2=c2

勾股定理八年级数学说课稿(精选篇4)

大家好,今天我说课的题目是《勾股定理》。

我将从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

首先谈谈我对教材的理解。本节课是人教版初中数学八年级下册17.1《勾股定理》的第一课时。如标题所言,主要探究勾股定理。此前学生已经知道直角三角形的分类,也接触过用割补法求面积,这为本节课的学习打下良好基础。同时本节课为应用勾股定理解决问题和探究勾股定理的逆定理做好铺垫。

二、说学情

接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力,也能做出逻辑推理,而且在生活中也为本节课积累了很多经验。所以,本节课的学习对学生而言是比较容易的。

三、说教学目标

根据以上分析,我制定了如下三维教学目标:

(一)知识与技能

掌握勾股定理,理解其推导方法与证明方法,能应用勾股定理求直角三角形的边长。

(二)过程与方法

经历勾股定理的探究与证明过程,渗透数形结合思想,发展空间观念。

(三)情感、态度与价值观

获得成功的体验,增强学习数学的兴趣与信心。

四、说教学重难点

在教学目标的实现过程中,教学重点是勾股定理,教学难点是勾股定理的探究与证明过程。

五、说教学方法

为了实现教学目标,突出重点、突破难点,我将采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面重点谈谈我对教学过程的设计。

(一)导入新课

课堂伊始,我会简单讲述数学家毕达哥拉斯去朋友家作客时从地砖图案中发现数学定理的故事。由此提出本节课来看一看毕达哥拉斯发现了什么样的结论。引出课题。

这样的设计可以让学生体会数学从生活中来,培养观察生活的习惯和热爱生活的乐观心态,并设置了悬念,能引起学生的好奇心和求知欲。

(二)讲解新知

引出课题后,我会承接情境,用大屏幕呈现地砖的图案,并加深图中一个等腰直角三角形周围三个正方形的颜色,方便学生观察。我会组织同桌合作,观察并讨论图中三个正方形的面积有什么关系,由此能得到等腰直角三角形的三边之间有什么关系。

经过讨论,学生根据拼成每个正方形的三角形地砖数量可以得到两个小正方形的面积之和等于大正方形的面积,而等腰直角三角形的三边恰好是每个正方形的边长,所以等腰直角三角形两条直角边的平方和等于斜边的平方。这是初步在等腰直角三角形中发现规律。

(三)课堂练习

课堂练习环节,我会组织学生求直角边长分别为3和4的直角三角形的斜边长。这一问题直接考查勾股定理,起到巩固知识的作用。

然后在此基础上稍作修改,已知一个直角三角形的两边长为3和4,求第三边长度。问题的难度有所提升,在巩固知识的同时渗透分类讨论思想。

(四)小结作业

最后我会请学生自主总结并分享收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

课后作业设置为选择合适的生活情境,应用勾股定理解决问题。旨在帮助学生进一步巩固勾股定理,同时提升应用意识。

勾股定理八年级数学说课稿(精选篇5)

一、教材分析:

(一)教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理这又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析

教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验_,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程

我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风

给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二步追溯历史解密真相

勾股定理的探索过程就是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限_。因此教师应引导学生利用“割”和“补”的方法求正方形c的面积,为下一步探索复杂图形的面积做铺垫。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面“勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形c的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须就是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。

以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。

感_认识未必是正确的,推理验__实我们的猜想。

第三步推陈出新借古鼎新

教材中直接给出“赵爽弦图”的_法对学生的思维就是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智_勾股定理。这就是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生就是学习的主体,教师就是组织者、引导者与合作者”这一教学理念。学生会发现两种_方案。

方案1为赵爽弦图,学生讲解论_过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论_之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨_。比“古”、“今”两种_法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。

教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。

第四步取其精华古为今用

我按照“理解—掌握—运用”的梯度设计了如下三组习题。

(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用

第五步温故反思任务后延

在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体学生的理念。

四、教学评价

在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。

五、设计说明

本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。

采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图_定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。

以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。

勾股定理八年级数学说课稿(精选篇6)

尊敬的各位领导,各位老师:

大家好!今天我说课的内容是初中八年级数学人教版教材第_章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。

一、教材分析

(一)教材地位和作用

勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。

(二)教学目标

根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:

1、知识与技能方面

了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系,并能简单应用。

2、过程与方法方面

经历探索及验_勾股定理的过程,了解利用拼图验_勾股定理的方法,能感受到数学思考过程的条理_,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。

3、情感态度与价值观方面

(1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(2)通过研究一系列富有探究_的问题,培养学生与他人交流、合作的意识和品质。

(三)教学重点难点

教学重点:掌握勾股定理,并能用它来解决一些简单的问题。

教学难点:勾股定理的_。

二、学情分析

我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他们的创造愿望。

三、教法选择

根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计"观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象_,更好的提高课堂效率。

四、学法指导:

为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。

五、教学过程

根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:

(一)创设情境,引入新课

一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:

星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰a处向地面b处架了一条缆车线路,已知山底端c处与地面b处相距1200米,

∠acb=90°,你能用所学知识算出缆车路线ab长应为多少?

_是不能的。然后教师指出,通过这节课的学习,问题将迎刃而解。

设计意图:以趣味_题目引入。从而设置悬念,激发学生的学习兴趣。教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。

紧接着出示本节课的学习目标:

1、了解勾股定理的文化背景,体验勾股定理的探索过程。

2、掌握勾股定理的内容,并会简单应用。

(二)勾股定理的探索

1、猜想结论

(1)探究一:等腰直角三角形三边关系。

由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。

在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。

提问:等腰直角三角形有这样的_质,其他的直角三角形也有这样的_质吗?

(2、)探究二:一般的直角三角形三边关系。

在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。

设计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。

2、_猜想

目前世界上_该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种_方法,下面我们通过古人赵爽的方法进行_。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a+b=c。即直角三角形两直角边的平方和等于斜边的平方、

设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的_方法,使学生认识到_的必要_、结论的确定_,感受到前人的伟大和智慧。

3、简要介绍勾股定理命名的由来

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理,但他比商高晚出生五百多年。

设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。

(三)勾股定理的应用

1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。

2、教学例1:课本66页探究1

师生讨论、分析:木板的宽2、2米大于1米,所以横着不能从门框内通过.

木板的宽2、2米大于2米,所以竖着不能从门框内通过.

因为对角线ac的长度最大,所以只能试试斜着能否通过.

从而将实际问题转化为数学问题.

提示:

(1)在图中构造出一个直角三角形。(连接ac)

(2)知道直角△abc的那条边?

(3)知道直角三角形两条边长求第三边用什么方法呢?

设计意图:此题是将实际为题转化为数学问题,从中抽象出rt△abc,并求出斜边ac的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。

(四)、课堂练习习题18、11、5。学生板演,师生点评。

设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。

(五)课堂小结

对学生提问:"通过这节课的学习有什么收获?"

学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。

设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。

(六)达标训练与反馈

设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。

以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样教",让学生人人参与,注重对学生活动的评价,探索过程中,会为学生创设一个_、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!

勾股定理八年级数学说课稿(精选篇7)

尊敬的各位评委老师好,我是__,我抽到的课题是《勾股定理》,接下来,我将从教材、学情、教学目标等六个方面展开论述:

一、说教材

《勾股定理》位于初中数学人教版八年级下册第十七章,本节勾股定理承接之前学习的平面几何及三角形相关内容,为今后解析几何及微积分提供理论基础。勾股定理指出了直角三角形三边之间的数量关系,为数形结合搭建桥梁,是数学学习中最重要的定理之一。

二、说学情

八年级的学生具有一定的抽象逻辑思维,但是知识与逻辑不成体系,好在数形结合的思想在《数轴》这一章节有所体现,学生们并不陌生,《实数》与《二次根式》提供”数“的基础,《三角形》知识提供”形“。针对这种情况我会引导学生建立自己思考问题的逻辑思维能力,加强对数学知识的应用。

三、说教学目标

在充分研究理解教材和分析学情的基础之上,我确立了以下教学目标:1、初步认识勾股定理的内容及重要意义,并解决相关几何问题;2、利用图形拼接等方法,探索勾股定理推导过程,提高学生分析问题和解决问题的能力;3、通过对我国古代研究勾股定理成就的介绍,如赵爽弦图、《九章算术》等,培养学生的民族自豪感和自信心。 以上教学目标是基于教材编排和学生具体情况而制定的,涉及对勾股定理的观察、计算、猜想、证明及简单应用过程,通过教师合理引导,启发学生自主探究勾股定理相关命题。

四、说教学重难点

本节课的重点是“如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2”这一命题的推理及正确性证明。本节课的难点是由浅入深的证明过程,从正方形方格入手,到等腰直角三角形,最后到一般直角三角形,证明命题的一般正确性。

五、说教法学法

根据本节课的重难点及学生生理、心理发展所能够理解掌握知识的程度,我会利用毕达哥拉斯等故事及神奇的自然景观图案导入引起学生的学习兴趣。在知识传递中,我将采取观察法、测量法,小组讨论法等等,对推理证明过程中相对困难的部分,我会尝试从等腰直角三角形等简单的图形入手,引导学生对勾股定理这一命题的探究,学有余力的同学可以自主尝试多种证明方法,培养学生学习数学的兴趣和能力。

六、说教学过程

只有师生共同参与的课堂才是高效的课堂,教师的教和学生的学充分融合,让学生对知识的掌握在教师的指导下深入浅出,因此我会涉及如下活动来提高课堂效率: 首先,我会让学生提前准备好刻度尺、铅笔、网格纸等工具,测量、观察直角三角形三边之间的关系——两直角边的平方和等于斜边的平方。网格纸中构造的等腰直角三角形是直角三角形中最为特殊的一类,等腰三角形的特征在上册课本三角形的学习中着重学习过,因此可以使学生更加快速的进入勾股定理的世界。

同时,借助之前的测量观察,提出反映这一数量关系的猜想在2500多年前毕达哥拉斯就曾发问过,引发学生的学习兴趣,后期一般直角三角形三边关系的证明过程中引出“赵爽弦图”,课后练习题提出《九中算数》池、葭问题等,通过学生自主推导,可增强学生的分析问题的能力。 其次,在勾股定理的证明过程中证明方法有非常多,课本中介绍了赵爽弦图这一种证明方法,我会挑选多种方法,利用多种图形,让学生自主裁剪拼接,利用讨论法,小组成员可以发现多种证明方法,相互交流增进师生感情的同时培养学生自主发现探究问题的能力。

在板书设计上,我会先将勾股定理写在黑板醒目的位置,后将教材中的证明方法及学生自主探究的证明方法逐一写、画在黑板上,此处可让学生上黑板写画,增加他们展示自我的机会,通过画图,多次证明命题,加深对知识的掌握并学会如何应用勾股定理解决问题。 最后的作业设计,我会充分发挥学生的自主性,寻找利用勾股定理解决实际问题的例子,并自主完成勾股定理的应用,例如,电线杆、零部件、电梯箱等等。学有余力的同学可以自主设计勾股定理的应用实例,更好地发挥学生自主创新的能力。

以上就是我的说课内容,谢谢各位评委老师的聆听!

勾股定理八年级数学说课稿(精选篇8)

一、教材分析:

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、教学难点:勾股定理的证明。

四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳:

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的.积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

    相关文章

    598662