高中数学的说课稿

| 育祥

说课稿中的教学过程部分应包括教学步骤、时间安排、教学方法以及教学资源的使用等方面的内容。教师需要合理安排教学时间,选取合适的教学方法和资源,以激发学生的学习兴趣和积极参与,并保证教学过程的顺利进行。现在随着小编一起往下看看高中数学的说课稿,希望你喜欢。

高中数学的说课稿

高中数学的说课稿(篇1)

一、教材分析

1.本节课内容在整个教材中的地位和作用

概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

2.教学目标定位

根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

(1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

(2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

(3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3.教学重难点

重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

二、教法学法分析

数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

为此,我设计了5个环节:

①创设情景——引入新课;

②交流探究——发现规律;

③启发引导——形成结论;

④训练小结——深化巩固;

⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

三、教学过程分析

1.创设情景—引入新课

教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

2.探究交流—发现规律

从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

3.启发引导—形成结论

前面的练习和例题,基本涵盖了二次函数图像平移变换的.各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

4.练习小结——巩固深化

为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。

这个过程中会产生学生之间的三次竞争:

①看谁解的快、用时最短;

②看谁书写的整齐;

③看谁做的对。

这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。

这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

5.延伸拓广——提高能力

课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

高中数学的说课稿(篇2)

一、教材分析

1、 教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、 教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:

(1)函数单调性的定义

(2)函数单调性的证明

能力目标:

培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:

培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

"教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

"授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、 例题讲解,学以致用

例1主要是对函数单调区间的`巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

高中数学的说课稿(篇3)

一、教材分析:

1.教材所处的地位和作用:

本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。

2.教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

知识与能力:

(1)了解柱体、锥体、台体的表面积.

(2)能用公式求柱体、锥体、台体的表面积。

(3)培养学生空间想象能力和思维能力

过程与方法:

让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。

情感、态度与价值观:

通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。

3.重点,难点以及确定依据:

本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

教学重点:柱,锥,台的表面积公式的推导

教学难点:柱,锥,台展开图与空间几何体的转化

二、教法分析

1.教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。

2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

三.学情分析

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

(2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

最后我来具体谈谈这一堂课的教学过程:

四、教学过程分析

(1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性

(2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。

(3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。

(4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(5)例题及练习,见学案。

(6)布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

(7)小结。让学生总结本节课的收获。老师适时总结归纳。

高中数学的说课稿(篇4)

一、地位作用

数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

基于此,设计本节的数学思路上:

利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

二、教学目标

知识目标:

1)理解等比数列的概念

2)掌握等比数列的通项公式

3)并能用公式解决一些实际问题

能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

三、教学重点

1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

2)等比数列的通项公式的推导及应用

四、教学难点

“等比”的理解及利用通项公式解决一些问题。

五、教学过程设计

(一)预习自学环节。(8分钟)

首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

回答下列问题

1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

2)观察以下几个数列,回答下面问题:

1, , , ,……

-1,-2,-4,-8……

1,2,-4,8……

-1,-1,-1,-1,……

1,0,1,0……

①有哪几个是等比数列?若是公比是什么?

②公比q为什么不能等于零?首项能为零吗?

③公比q=1时是什么数列?

④q>0时数列递增吗?q<0时递减吗?

3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

4)等比数列通项公式与函数关系怎样?

(二)归纳主导与总结环节(15分钟)

这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

通过回答问题(1)(2)给出等比数列的定义并强调以下几点:

①定义关键字“第二项起”“常数”;

②引导学生用数学语言表达定义: =q(n≥2);

③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

高中数学的说课稿(篇5)

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美。

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹。

教学难点:图形、文字、符号三种语言之间的过渡。

三、教学方法和手段

教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子。

演示:这是美丽的城市夜景图。

演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。

演示建筑中也有许多美丽的轨迹曲线。

设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。

高中数学的说课稿(篇6)

高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

一、内容分析说明

1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

近似值。

二、学校情况与学生分析

(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

三、教学目标

复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

(2)会运用展开式的通项公式求展开式的特定项。

2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。

3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

四、教学过程

1、知识归纳

(1)创设情景:

①同学们,还记得吗? 、 展开式是什么?

②学生一起回忆、老师板书。

设计意图:

①提出比较容易的问题,吸引学生的注意力,组织教学。

②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

(2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)

②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

③巩固练习 填空

设计意图:

①教给学生记忆的方法,比较分析公式的特点,记规律。

②变用公式,熟悉公式。

(3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

2、例题讲解

例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

讲解过程

设问:这里 ,要求的第4项的有关系数,如何解决?

学生思考计算,回答问题;

老师指明

①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

②第4项的系数与的第4项的二项式系数区别。

板书

解:展开式的第4项

所以第4项的系数为 ,二项式系数为 。

选题意图:

①利用通项公式求项的系数和二项式系数;

②复习指数幂运算。

例2 求 的展开式中不含的 项。

讲解过程

设问:

①不含的 项是什么样的项?即这一项具有什么性质?

②问题转化为第几项是常数项,谁能看出哪一项是常数项?

师生讨论 “看不出哪一项是常数项,怎么办?”

共同探讨思路:利用通项公式,列出项数的方程,求出项数。

老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

板书

解:设展开式的第 项为不含 项,那么

令 ,解得 ,所以展开式的第9项是不含的 项。

因此 。

选题意图:

①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

例3求 的展开式中, 的系数。

解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

板书

解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

所以 的展开式中 的系数为

例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

解:展开式中前三项的系数分别为1, , ,

由题意得2× =1+ ,得n=8.

设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

有理项为T1=x4,T5= x,T9= .

3、课堂练习

1.(20__年江苏,7)(2x+ )4的展开式中x3的系数是

A.6B.12 C.24 D.48

解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

答案:C

2.(20__年全国Ⅰ,5)(2x3- )7的展开式中常数项是

A.14 B.14 C.42 D.-42

解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

(-1)r·x ,

当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

答案:A

3.(20__年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

解析:∵(x +x )n的展开式中各项系数和为128,

∴令x=1,即得所有项系数和为2n=128.

∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

令 =5即r=3时,x5项的系数为C =35.

答案:35

五、课堂教学设计说明

1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

六、个人见解

    相关文章

    588944