八年级数学上册期中说课稿

| 育祥

说课稿需要明确教学目标和评估方式,通过形成性评价和终结性评价,对学生的学习成果进行客观的评判和反馈,并调整教学策略和方法。应注重师生互动和情感交流,营造和谐的教学氛围,激发学生的学习兴趣和积极性。现在随着小编一起往下看看八年级数学上册期中说课稿,希望你喜欢。

八年级数学上册期中说课稿

八年级数学上册期中说课稿(篇1)

一、教材

不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。

另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下:

(一)知识与技能目标

掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题

(二)过程与方法目标

1. 经历探索不等式基本性质的过程,体验数学学习探究的方法

2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力

(三)情感态度与价值观目标

1.学生在探索过程中感受成功、建立自信

2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质

二、重点、难点

重点:掌握不等式基本性质及熟练应用性质解决实际问题

难点:第三条性质的应用

三、教法

以引导发现、活动参与、交流讨论为主,学生自己举出实际不等式例子,教师根据认识规律引导学生由等式性质向不等式知识的迁移,安排学生用一组数在不等式两端参与四则运算,学生通过与其他学生的交流讨论,总结规律得出不等式基本性质

在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。

四、学情

一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中 表现自我发展自我从而感到数学学习的重要性及其中的乐趣。

学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。

五、教学过程

本节课我安排了四个教学过程:

(一)回忆旧知,引出新知

经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。

在这一环节通过对等式性质的回忆进而导出不等式的基本性质,

不仅对旧知的巩固也激发了学生对新知的兴趣。

(二)自主参与探索,交流讨论总结性质规律

教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。

在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。

在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。

(三)应用新知,解决问题

我将上节课没圆满完成的问题再次提出:通过一棵树的树围可计算其生长年龄,某树栽种时树围是5cm ,以后每年树围增长3cm ,问这棵树至少生长多少年才能超过2.4m ?

上节课我们已经列出不等关系

设 至少生长x 年才能超过2.4m 则有不等关系

0.03x 0.05 > 2.4

现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来)

再在黑板上列出两个例题 5x 3 < 2 - 2x – 1 > 3

要求学生仿照刚才不等式应用过程将其表示“x < a (x > a) ”形式,并找两名同学板书。在这一环节根据初中学生开始对“有用”数学感兴趣选取第一道例题,学生会感到数学就在身边

在练习过程中教师根据普遍存在的问题加以强调并帮助学生改正,针对个别(较慢)学生再具体教学

(四)引导学生总结全课

在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题

八年级数学上册期中说课稿(篇2)

一、教材中的地位及作用

《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。

二、学情分析

我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。

三、教学目标

知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。

过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。

情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。

四、重点难点

重点:探索并掌握图形坐标变化与图形变换之间的内在关系。

难点:坐标变化和图形拉伸、压缩间的关系。

五、教法与学法分析

1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发、为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:

(1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。

(2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。

2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:

(1)探究学习法。把问题留给学生,引导他们去解决问题。

(2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。

六、教学过程

教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。

教学环节师生活动过程设计意图

情景引入利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望

新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。

问题:所作图形象什么?

通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?

让学生讨论总结出自己的结论,教师不作任何说明。

要求学生在讨论的基础上去作图:让鱼向右移动3个单位。

作出图形,比较所作图形是否和所得结论吻合。

多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。

问题引入。

探索新知想一想议一议

一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化?

通过课件演示其变化过程,验证学生的答案。

二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?

由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。

综合学生的结论,引导他们得出如下结论:

当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位。

当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a>0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。

教学环节师生活动过程设计意图

举一反三想一想议一议并回答

1、对于前面的结论,反过来是否成立?

让学生仔细对照所作图形,充分思考,鼓励他们去讨论。

2、观察以下图形,蓝、黑鱼是在红鱼的基础上怎样变化而来的,坐标发生怎样的变化?(1红,2蓝,3黑)

(1)第二条是第一条向左平移4单位得到,横坐标减少4;第三条是第一条向右平移6单位得到,横坐标增加6。

(2)第二条是第一条向上平移4单位得到,纵坐标增加4;第三条是第一条向下平移5个单位得到,纵坐标减少5。

(3)第二条是第一条向左平移5个单位向上平移3个单位得到,横坐标减少5纵坐标增加3;第三条是第一条向右平移3个单位向下平移4个单位得到,横坐标增加3纵坐标减少4。通过上面的学习,学生已经学到了当纵坐标或横坐标改变时,图形将纵向或横向平移,在此基础上来让学生自己得出当图形改变时点的坐标改变的规律,以达到培养学生利用扩散思维进行自我学习的能力。

培养学生利用所学知识解决问题的能力

教学环节师生活动过程设计意图

触类旁通大胆猜测:通过前面的学习,我们知道当鱼的横、纵坐标增加或减少时,鱼就能左右游动或是上下游动。现在,请同学们思考一个问题:当坐标扩大或缩小一定的倍数关系时,鱼会发生怎样的变化呢?

由学生猜测讨论,并和其他组的同学分享本组的结论。

在学生都有自己结论的基础上,要求学生完成以下作图:

作图验证按以下要求作图:在第一条鱼的基础上横坐标扩大为原来的2倍;

作完图形和周围同学比较是否一样;所得图形和猜测所得结论是否吻合。

在这个结论的基础上依次说出以下几种情况的结论:

当(1)横坐标缩小为原来的

(2)纵坐标扩大为原来的2倍

(3)纵坐标缩小为原来的

讨论活动:由学生分组讨论图形平移和坐标变化之间的关系,然后组织学生进行阐述,最后集合学生结论总结规律:

规律:当横坐标扩大为原来的n倍(n>1)(或缩小为原来的)时,图形被横向拉伸为原来的n倍(或被压缩为原来的);

当纵坐标扩大为原来的n倍(或缩小为原来的)时,图形被纵向拉伸为原来的n倍(或被压缩为原来的)

拓展思考:当(1)横、纵坐标扩大为原来的2倍;

(2)横、纵坐标缩小为原来的。

图形又会发生什么样的变化?这一部分的设计,还希望通过这样的方式,让学生体会解决数学问题的一般方法“大胆猜测——小心验证——合理求证”,进一步培养学生的猜想探索能力

教学环节师生活动过程设计意图

巩固拓展归纳巩固:

引领学生学生复习图形平移,图形拉伸、压缩和坐标变化之间的关系巩固本节所学知识点

课外思考

图中红、蓝色的鱼与黑色的鱼对应顶点的坐标之间有什么关系,这些鱼可以看作黑色的鱼如何变化而来的?图中红色的鱼与蓝色的鱼对应顶点的坐标之间有什么关系,你能将红色的鱼通过适当的变化得到蓝色的鱼吗?请写出具体变化过程。

课堂内外的延伸

课外拓展:

课本P165第3题

七、评价与反思

1、这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。

2、教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。

3、通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。

4、存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。

八年级数学上册期中说课稿(篇3)

一、创设情境,引导学生参与新课。

师:同学们,生活中到处都能碰到和数学有关的问题。今天,我们一起去书店买课外书,看看在那里会碰到什么数学问题

【利用买书这一情境导入新课,可以体现数学来源于生活实际这一原则。利用学生身边的事情或学生感兴趣的事情创设学习情境,可以激发学生的学习兴趣。】

二、学习新知。

1.出示主题图。

第一步,让学生看图并说说从图上知道了什么。

第二步,让学生根据图上的条件提数学问题。

第三步,让学生自己解决问题:《汪汪乐园》和《海底世界》共有多少本?

【这一环节体现数学知识来源于生活实际和可以运用数学知识解决实际问题的道理。】

2.探讨算法。

(1)学生独立思考算法,试算28+4=( )。

【不同的学生有不同的个性,思考同一个问题所需要的时间也不同。对同一个问题,有的学生可能已经有这方面的知识储备,很快就能得出结论,而有的学生则需要较长时间的思考。所以,教师提出问题后,一定要给学生留足独立思考的时间,保证每个学生都能得出自己的结论,这样在后来的分组交流或全班交流时,他们才会勇于表现自己,乐于表现自己,积极地参与课堂的学习活动。】

(2)分4人小组交流算法,要求组长统计算法。在全班评选想出算法最多的小组。

【进行组与组之间的竞争,可以极大地调动学生的学习积极性,提高学生的主动参与意识。】

(3)全班学生交流算法。

算法一:数小棒,先摆28根,再摆4根,然后把4根小棒一根一根地加到28根上,一边加,一边数,数出最后的结果。

算法二:先算28+2=30

再算30+2=32

算法三:先算8+4=12

算法四:列竖式:

学生已经学会了列竖式计算两位数不进位加法,有的学生已经有了列竖式计算进位加法的知识储备,所以当学生提出可以列竖式计算时,教师就先让学生试着列竖式计算,自己讲解计算方法,然后再强调满十进一的计算法则。

(4)学生选择适合自己的算法,分组进行交流,并说明自己选这种算法的原因。

【通过学生比较,选算法,分组交流,使他们明白选择算法是为了计算更快速、更准确,增强学生的优化计算方法的意识。】

三、练习试一试。

1.你想买哪两本书,需要多少钱?

先请学生独立做题,然后全班交流计算方法和计算结果。

【让学生带着自己的主观意愿去做题,学生的兴趣会更浓,全班交流时也会很积极地参与发言。】

2.有30元钱,可以买哪些书?

学生独立思考、做题;分4人小组交流,组长统计计算方法,评选出每个小组中想出方法最多的智多星;全班交流计算方法。

四、自由练习。

师:你今年多少岁?算一算再过16年你多少岁?

你妈妈今年多少岁?再过8年多少岁?

你爸爸今年多少岁?再过7年多少岁?

(1)学生独立列式计算;

(2)分4人小组交流计算结果。

【以学生及其父母的年龄为材料进行练习,学生兴趣浓厚,积极地参与练习与讨论。】

五、小结。

师:同学们也可以在生活中找一找数学问题,试着去解决这些问题。如果解决不了,可以存入问题银行以后再解决【再次说明数学来源于实际生活,数学知识可以帮助我们解决实际问题的道理。】

六、学生自评。

要学生说一说自己这节课表现得怎么样?如果好,好在哪里?如果不好,以后打算怎么做?

【通过学生自评,增强学生的主人翁意识,鼓励学生积极动脑,踊跃发言,形成积极向上的学习氛围。】

八年级数学上册期中说课稿(篇4)

一、教学目标

1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.

2.会进行简单的二次根式的乘法运算.

3.使学生能联系几何课中学习的勾股定理解决实际问题.

二、教学重点和难点

1.重点:会利用积的算术平方根的性质化简二次根式.

2.难点:二次根式的乘法与积的算术平方根的关系及应用.

重点难点分析:

本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.

本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.

三、教学方法

从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.

1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要

的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段

利用投影仪.

五、教学过程

(一)引入新课 观察例子得到结果

类似地可以得到:

由上一节知道一般地,有=(a,b)

通过上面的例子,大家会发现 =(a,b) 也成立

(二)新课

积的算术平方根.

由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.

要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):

1、 2、 3、

说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。

2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)

化简二次根式的步骤

1、将被开方数尽可能分解出平方数;

2、应用=(a,b)

3、将平方项利用=化简

小结:1、积的算术平方根与二次根式的乘法的互逆性;

2、灵活应用他们进行二次根式的乘法运算及化简二次根式

作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题

八年级数学上册期中说课稿(篇5)

一、从引入到研究。

从学生的认知的平行四边形的特点平滑过渡到矩形新知识上来,过渡自然,知识衔接很紧密,而且从中体现了矩形就是平行四边形的知识联系和关系。展现给学生清晰的知识系统和结构。然后紧扣矩形是平行四边形的特例,用研究平行四边形的方法来研究矩形的性质,引人入胜,提高了学生跃跃欲试的强烈愿望,达到了激趣导学的目的。此时秦老师抓住了学生的心理进一步深入,顺便提出学习目标,给学生指明了研究的方向和任务,从而引导学生正确地探究。不足的是引入和矩形定义的给定这两个过程学生没有充分的体验。引入时应该给每个学生一个与老师展示的模型一样的模型,让学生直观地去探求平行四边形在各种情况下的情形,这正好给学生开放思维的机会,其实学生根据已有的小学的经验完全能知道某一特殊位置的矩形。这样就进一步激发学生探求知识的热情和兴趣。同时培养学生探索科学的至学精神,体验到了生活中有无穷的科学奥妙。情感意识和价值观也得到了培养。

二、 学生思维、操作与老师的引导容为一体 。

秦老师设计了让学生先画一个矩形,然后让学生由自己的感知来认识矩形的特点。这一点设计巧妙。学生前面有探究的欲望,有了探究的方向,而现在又有了研究的方法了,并且还指导小组合作,分工明确,所以学生从此就切入到探究的活动之中。这整个过程一环扣一环,环环相连,层层深入,步步为营。学生有热情、有兴趣、有目标、有方向、有方法,所有的同学都参与其中了。

三、小组的评价,激励性很强。

小组的探研,组内的合作和组间的交流开展得有色有声,形式多样,内容丰富因陋就简 就地取材,例如给小组打分,把小组的共同的结果贴在黑板上等等。学生激情高涨,探索劲头十足,培养了学生不畏困难的毅力和勇气,提高了学生的交际交流能力和自我展示能力。而老师也没有闲着,一直参与其中,并指导和引导他们,及时地评价学生。秦老师的导演者、引导者、合作者的角色把握很准,完全没有主观的垄断和主导学生。而是时刻把学生放在主体的位置,让他们充分地表演和展示。

总之,秦老师设计此课 下了功夫。引导到位,组织严密,激情导趣,游刃有余,如鱼得水。教学方法先进灵活,语言干练,姿态亲和。注重了学生各种能力的培养,提高了学生不畏困难的毅力和信心。课堂线条明朗,首尾呼应, 效果 明显,是一堂成功的好课,值得我们学习和推广。

八年级数学上册期中说课稿(篇6)

尊敬的各位评委、各位老师:

大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。

一、说教材:

1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。

2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:

(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;

(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。

3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。

二、说教法和学法指导:

为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。

三、说教学设计:

本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。

1、导学达标:

在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。

2、探究释疑:

这一环节一共设计了两个探究活动。

第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。

在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度

八年级数学上册期中说课稿(篇7)

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)

3、若x2—y2=30,x—y=—5求x+y。

八年级数学上册期中说课稿(篇8)

一、教材分析

1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析

1、知识目标:掌握最短路径概念、能够求解最短路径。

2、能力目标:

(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

三、教法分析

课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

四、学法指导

1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析

(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

教学方法及注意事项:

(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

(2)提示学生“温故而知新”,养成良好的学习习惯。

(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

(三)讲授新课(25~30分钟)

1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

教学方法及注意事项:

①启发式教学,如何实现按路径长度递增产生最短路径?

②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

(四)课堂小结(3~5分钟)

1、明确本节课重点

2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

(五)布置作业

1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

六、教学特色

以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

    相关文章

    539932